¥ Veridise
Auditing Report

Hardening Blockchain Security with Formal Methods

NFT

Veridise Inc.
March 31, 2025

» Prepared For:

Mina Foundation
https://www.minafoundation.com/

» Prepared By:
Aayushman Thapa Magar

Benjamin Sepanski
Mark Anthony

» Contact Us:

contact@veridise.com

» Version History:
Mar. 31, 2025 V2

Mar. 21, 2025 A%t
Mar. 19, 2025 Initial Draft

© 2025 Veridise Inc. All Rights Reserved.

https://www.minafoundation.com/
contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 4
3 Security Assessment Goals and Scope 5
3.1 Security AssessmentGoals o oL o oL 5
3.2 Security Assessment Methodology & Scope 5
3.3 Classification of Vulnerabilities 6
4 Vulnerability Report 7
41 Detailed DescriptionofIssues 8
411 V-MNFT-VUL-001: Admin approval for transfers can be bypassed 8
412 V-MNFT-VUL-002: Approving a delegate address does not verify if
changing approvalisallowed 9
413 V-MNFT-VUL-003: Oracle approval for updates can be bypassed 11
414 V-MNFT-VUL-004: isPaused is not updated when updating the NFT state 12
415 V-MNFI-VUL-005: Maliciously upgraded NFTs may mint new NFTs . . 13
41.6 V-MNFT-VUL-006: Oracle missing in equality check 14
417 V-MNFT-VUL-007: provedState in initialize method will always be false 16
418 V-MNFT-VUL-008: Permanently paused NFTs can be minted 18
419 V-MNFT-VUL-009: Admin may change minted NFT address/owner . . 19
4110 V-MNFT-VUL-010: Approved may be set when collection is paused . . . 20
4111 V-MNFT-VUL-011: Centralization Risk 22
4112 V-MNFT-VUL-012: oljs best practices 27
4113 V-MNFT-VUL-013: Duplicate and unused program constructs 29
4114 V-MNFT-VUL-014: Incorrect URI/Symbol access control 30
4115 V-MNFT-VUL-015: Change of owner/admin does not use two step pattern 31
4116 V-MNFT-VUL-016: MintParams fee/tokenld unused 33
4117 V-MNFT-VUL-017: Transfer event emitted twice 35
4118 V-MNFT-VUL-018: Missing checks in Admin.deploy() 36
4119 V-MNFT-VUL-019: Pausability of the collection and admin are connected 37
4.1.20 V-MNFT-VUL-020: Admin may deploy unusable NFT vkey 38
41.21 V-MNFT-VUL-021: Unused Imports 40
4.1.22 V-MNFT-VUL-022: from param unused in transfer functions 41
4.1.23 V-MNFT-VUL-023: Typos and missing/incorrect comments 43
4.1.24 V-MNFT-VUL-024: Recommended contract factory validations 45
Glossary 47

Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

¥ Executive Summary

From Mar. 3, 2025 to Mar. 14, 2025, Mina Foundation engaged Veridise to conduct a security
assessment of their NFT Standard. The security assessment covered the oljs smart contract
implementation of the core NFT contracts, as well as several default implementations of extension
contracts. Veridise conducted the assessment over 6 person-weeks, with 3 security analysts
reviewing the project over 2 weeks on commits 06506ba - €329d79. The review strategy involved
a tool-assisted analysis and thorough code review of the program source code performed by
Veridise security analysts.

Project Summary. The security assessment focused on the core NFT contracts. In the Mina
standard, each NFT is represented as a zkApp stored in a unique Mina Account. Each NFT’s
metadata and owner are stored in its Account’s appState. Individual NFTs are managed by
another zkApp called a Collection.

Each NFT contract is bound to its Collection by its tokenId. More precisely, a NFT contract is a
member of a Collection exactly when the NFT Account’s tokenId matches the derived tokenId of
the Collection Account®. As a consequence, all NFT methods (minting, transferring, and updating
state) must be performed through the Collection zkApp.

The NFT Standard enables a large level of customization. The Collection interacts with a fully
customizable Admin contract, responsible for defining when NFTs can be minted, setting NFT
transfer fees, permanently ending minting, handling contract upgrades, and configuring both
Collection metadata and individual NFTs. The standard includes a default Admin implementation
in which most configurations are immutable, and a centralized entity approves actions like
pausing and resuming the contract.

Additional features allow arbitrary contract logic to own/transfer/approve upgrades for
individual NFTs, as well as per-NFT custom logic to programmatically update NFT ownership.
These features are highly configurable, allowing NFT creators to disable the usage of unwanted
features through immutable, per-NFT feature-flags and optionally requiring Admin-contract
approval on transfers.

Code Assessment. The Mina Foundation developers provided the source code of the NFT
Standard contracts for the code review. The source code appears to be mostly original code
written by the Mina Foundation developers. It contains documentation in the form of READMEs
and thorough documentation comments on functions and storage variables. To facilitate the

* The terminology of tokenIds can be confusing. The Mina docs provide an overview of these concepts, but for
completeness we briefly describe them here.

Mina Accounts have two tokenIds of interest. Firstly, each Mina Account is uniquely identified by a public
key and a tokenId. This tokenId is often called the Account’s own tokenId. Default Mina Accounts (which
hold MINA balances) have a tokenId of one. Secondly, each Mina Account has a derived tokenId. This value
is a (cryptographically) unique value associated to the Account, and may be used as different Accounts’ own
tokenId. Updates to Accounts must always follow the tokenId derivation chain, enforcing a kind of child-parent
relationship between the “child” Account whose own tokenId is equal to the derived tokenId of its “parent”
Account.

Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

https://docs.minaprotocol.com/zkapps/writing-a-zkapp/feature-overview/custom-tokens#custom-token-terminology

Contents

Veridise security analysts” understanding of the code, the NFT Standard developers also shared
a web interface for interacting with deployed Collections. Additionally, they provided several
example use cases/extensions of the NFT standard such as auctions, marketplaces, and advanced
admin contracts.

The source code contained a test suite, which Veridise security analysts noted was high-quality.
They provided crucial insight into how contracts are configured and interact with each other.
They provided a good understanding of the contract logic, function flows, and dependencies,
which considerably aided the security review process, and helped with proof-of-concept
development. However, mosts of the tests only use expected values, without checking for
improper or unexpected input. Furthermore, no specific errors are explicitly tested. The current
test suite only verifies whether a transaction succeeds when called with expected arguments.

The test coverage for src/contract is extensive, with 99.78% statement coverage and 98.57%
function coverage, showing that most of the contract logic is tested. However, branch coverage
is lower at 45.29%. For src/interfaces, the coverage is lower, with 91.1% of the statement and
only 48.57% of the functions tested, while the branch coverage is at 54.54%.

Summary of Issues Detected. The security assessment uncovered 24 issues, 3 of which are
assessed to be of high or critical severity by the Veridise analysts. Specifically, missing checks
on flags allowed bypassing admin approval on transfers (V-MNFT-VUL-001) and changing
the approved sender when disallowed (V-MNFI-VUL-002), and oracle checks required by NFT
updates could be ignored (V-MNFI-VUL-003). The Veridise analysts also identified 2 medium-
severity issues, including missing state updates (V-MNFI-VUL-004) and possible disallowed
NFT-minting in case of a malicious upgrade (V-MNFT-VUL-005), as well as 6 low-severity issues,
11 warnings, and 2 informational findings. The Mina Foundation fixed 23 issues and provided a
partial fix to V-MNFT-VUL-011, leaving only the inherent centralization risks of the protocol
described in the issue.

Recommendations. After conducting the assessment of the protocol, the security analysts
had a few suggestions to improve the NFT Standard.

Documentation. The documentation of the NFT Standard is extensive and thorough, with each
important field and function documented. There are a few places, however, where additional
specificity is important. The Veridise analysts believe it is especially crucial for future developers
implementing the standard, and future users/auditors evaluating an instantiation of the
standard, to clearly understand the exact purpose of each flag, the guarantees provided by the
fee structure, and the responsibilities of both custom admin contracts and off-chain update
logic. The analysts’ recommended additions are listed out in detail in V-MNFT-VUL-023. While
this is an informational issue, the Veridise team strongly advises all recommendations be taken
to ensure the standard is properly used.

Checks for Users. Users should be especially careful when approving a contract as a sender, or
transferring ownership of an NFT to a contract. As mentioned in V-MNFT-VUL-011, transfer via
signature cannot be turned off in the standard. Instead, users must validate that the contract’s
access permissions are immutably set to proof-only, and accept the risk of NFT theft after a
Mina hard fork.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

Contents

Testing Configuration Flags. All of the high and critical-severity issues came from missing checks
on flags. Given the highly-configurable nature of this protocol, a missing check on one of several
flags is easy to miss. Consider adding a test for each flag ensuring that each mutability restriction
causes a failure in the expected functions.

Publishing vkeys and permissions. All instantiations of the NFT Standard should use the same
verification key for their NFTs, and the same verification key for their Collections. Additionally,
the Collection permissions should be configured as specified in its deploy () function. To help
users and developers easily validate that a project has used the constructor factory pattern
correctly when interacting with and building new NFTs, consider publishing the expected
verification key and permissions for the Collection and NFT contracts.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

2 \Z Project Dashboard

Table 2.1: Application Summary.

Audited Version Platform

NFT Standard 06506ba - €329d79 8el3c6a5 oljs Mina

Table 2.2: Engagement Summary.

Method Consultants Engaged Level of Effort

Mar. 3-Mar. 14, 2025 Manual & Tools 6 person-weeks

Table 2.3: Vulnerability Summary.

Adknoicized

Critical-Severity Issues

High-Severity Issues 2 2 2
Medium-Severity Issues 2 2 2
Low-Severity Issues 6 6 5
Warning-Severity Issues 1 1 1
Informational-Severity Issues 2 2 2
TOTAL 24 24 23

Table 2.4: Category Breakdown.

Data Validation 9
Maintainability

Logic Error

Access Control

Usability Issue
Authorization

Missing /Incorrect Events
Under-constrained Circuit

— o= =N W W

Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

'\g Security Assessment Goals and Scope

3.1 Security Assessment Goals

The engagement was scoped to provide a security assessment of the NFT Standard. During the
assessment, the security analysts aimed to answer questions such as:

Is there sufficient access control implemented for critical actions within the NFT Collection?
Can the admin or oracle approval requirements for actions be bypassed?

Can a non-authorized person perform privileged actions?

Is NFT state updated correctly?

Are the relevant NFT state flags and permissions verified properly?

Can actions for an NFT be locked, causing denial of service?

Are there any usability concerns with respect to integrating the NFT Standard?

Are the transfer fees and royalty fees implemented correctly?

Are NFTs unique and associated to a unique Collection?

How can malicious action by the Admin harm NFT owners or creators?

Is the project susceptible to centralization risks? And if so, is there sufficient documentation
that informs a user regarding the same?

» How does use of the constructor factory pattern affect security of the protocol?

vV VYV VvV VvV VYV VvVVvyYVYYyYy

In addition, during the assessment, the security analysts also aimed to verify if the code is
vulnerable to any common oljs-specific vulnerabilities, such as:

Under-constrained or over-constrained circuits
Unsafe zkApp permissions
Arithmetic overflows leading to denial of service

Inability to receive funds when needed

>
>

>

» Insufficient input parameter validation

>

» Ability to attach AccountUpdates in unexpected portions of the update tree

3.2 Security Assessment Methodology & Scope

Security Assessment Methodology. To address the questions above, the security assessment
involved a combination of human experts and automated program analysis tools. In particular,
the security assessment was conducted with the aid of the following techniques:

» Static analysis. To identify potential common vulnerabilities, security analysts leveraged
the open-source tools npm audit, Semgrep, and eslint. These tools are designed to find
known issues in dependencies and common vulnerabilities in JavaScript programs.

Scope. The scope of this security assessment is limited to the following folders of the source code
provided by the NFT Standard developers, which contains the smart contract implementation
of the Mina NFT Standard:

Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

Contents

silvana-lib/packages/nft/src/contracts/
silvana-lib/packages/nft/src/interfaces/
silvana-lib/packages/nft/src/util/div.ts
silvana-lib/packages/storage/src/storage.ts

vVvyYyy

Methodology. Veridise security analysts reviewed the reports of previous audits for NFT Standard,
inspected the provided tests, and read the NFT Standard documentation. They then began a
review of the code assisted by static analyzers.

During the security assessment, the Veridise security analysts regularly met with the NFT
Standard developers to ask questions about the code. The Veridise security analysts also perused
the shared documentation for the NFT Standard which included references for testing.

3.3 Classification of Vulnerabilities

When Veridise security analysts discover a possible security vulnerability, they must estimate
its severity by weighing its potential impact against the likelihood that a problem will arise.

The severity of a vulnerability is evaluated according to the Table 3.1.
Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely | Mg Medium
Likely [0 WA | Low. | Medium [U00 High S0
Very Likely [oBoWe] Medium [g ERC

The likelihood of a vulnerability is evaluated according to the Table 3.2.

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

The impact of a vulnerability is evaluated according to the Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://docs.minanft.io/

¥ Vulnerability Report

This section presents the vulnerabilities found during the security assessment. For each issue
found, the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.) is specified. Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

D hescription ——Severity | Status |

V-MNFT-VUL-001 Adminapproval for transfers canbe bypassed Critical Fixed
V-MNFT-VUL-002 Approving a delegate address does not. .. High Fixed
V-MNFT-VUL-003 Oracle approval for updates can be bypassed =~ High Fixed
V-MNFTI-VUL-004 isPaused is not updated when updating... Medium Fixed
V-MNFT-VUL-005 Maliciously upgraded NFTs may mintnew... Medium Fixed
V-MNFT-VUL-006 Oracle missing in equality check Low Fixed
V-MNFT-VUL-007 provedState in initialize method will. .. Low Fixed
V-MNFT-VUL-008 Permanently paused NFTs can be minted Low Fixed
V-MNFT-VUL-009 Admin may change minted NFT... Low Fixed
V-MNFI-VUL-010 Approved may be set when collection is. .. Low Fixed
V-MNFI-VUL-011 Centralization Risk Low Partially Fixed
V-MNFI-VUL-012 oljs best practices Warning Fixed
V-MNFT-VUL-013 Duplicate and unused program constructs Warning Fixed
V-MNFT-VUL-014 Incorrect URI/Symbol access control Warning Fixed
V-MNFI-VUL-015 Change of owner/admin does not use two... Warning Fixed
V-MNFT-VUL-016 MintParams fee/tokenld unused Warning Fixed
V-MNFT-VUL-017 Transfer event emitted twice Warning Fixed
V-MNFI-VUL-018 Missing checks in Admin.deploy() Warning Fixed
V-MNFT-VUL-019 Pausability of the collection and adminare... Warning Fixed
V-MNFT-VUL-020 Admin may deploy unusable NFT vkey Warning Fixed
V-MNFT-VUL-021 Unused Imports Warning Fixed
V-MNFT-VUL-022 from param unused in transfer functions Warning Fixed
V-MNFI-VUL-023 Typos and missing/incorrect comments Info Fixed
V-MNFT-VUL-024 Recommended contract factory validations Info Fixed
Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

© 00 N O U B W N =

=
N B ©

Contents

4.1 Detailed Description of Issues

4.1.1 V-MNFT-VUL-001: Admin approval for transfers can be bypassed

Criica 06506ba
Authorization Fixed
packages/nft/src/contracts/collection.ts
Collection.transferByProof()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/18

The function transferByProof () can be used to transfer ownership using a proof, in case the
NEFT owner or the approved address is a contract.

This method is missing an important validation. As highlighted in the snippet below, it does
not verify that CollectionData. requireTransferApproval is false. Therefore, the admin
approval requirement can be bypassed.

@method async transferByProof(params: TransferParams): Promise<void> {

const { address, from, to, price, context } = params;

const collectionData = CollectionData.unpack(
this.packedData.getAndRequireEquals()

);

collectionData.isPaused.assertFalse(CollectionErrors.collectionPaused);

// Veridise - Missing check which validates that admin approval is not required.
//[...elided]

const canTransfer = await approvalContract.canTransfer(transferEvent);
canTransfer.assertTrue();

-

Snippet 4.1: Snippet from transferByProof (). Note that the approvalContract is either the
owner or approved spender of the NFT, not the admin.

Impact NFTs can be transferred without approval from the admin, even if admin approval is
required.

Without this check, an attacker may bypass all custom transfer logic enforced by the admin
contract. For example, admins could not whitelist or blacklist accounts.

Recommendation Add an assert in the mentioned function which verifies
CollectionData.requireTransferApproval is false.

Developer Response The developers assert that requireTransferApproval is false, as
recommended.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/18

© 0 N O U~ W N

e e T i e =
o U A W N B O

0 N o U W N

Contents

4.1.2 V-MNFT-VUL-002: Approving a delegate address does not verify if changing
approval is allowed

High oes06ba
Data Validation Fixed
packages/nft/src/contracts/nft.ts
NFT.approveAddress()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/19

The function approveAddess () can be used to set or change the NFI’s approved address for
delegated actions. See snippet below for details.

@method. returns(PublicKey)

async approveAddress(approved: PublicKey): Promise<PublicKey> {
const data = NFTData.unpack(this.packedData.getAndRequireEquals());
data.isPaused.assertFalse(NftErrors.nftIsPaused);
data.approved = approved;
this.packedData.set(data.pack());
this.emitEvent("approve", approved);
return data.owner;

class NFTData extends Struct({

//lelided]..

/*x Specifies if the NFT’s approved address can be changed (readonly). x/
canApprove: Bool, // readonly

//lelided]..

})

Snippet 4.2: Snippet from approveAddress ()

However, this function is missing an important check. The NFTData contains a field canApprove
which is used to specify if the NFI’s approved address can be changed. This field is not
validated within this function. So, the approved address can be set even when canApprove is
false. See snippet below for context.

class NFTData extends Struct({
//[elided]..
/*x Specifies if the NFT’s ownership can be transferred (readonly). */
canTransfer: Bool, // readonly
/** Specifies if the NFT’'s approved address can be changed (readonly). x/
canApprove: Bool, // readonly
//[elided]..
1)

Snippet 4.3: Snippet from NFTData

Impact A user can set the approved address to another account or smart contract, even if the
collection creator specifically disallowed it.

For example, a collection which intends a marketplace to immutably be the approved address
may rely on the canApprove flag. An attacker could potentially reset the approved public key,

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/19

10 Contents

preventing the market from transferring the NFT when appropriate.

Recommendation Assert that canApprove is true before approving an address for delegation
of actions.

Developer Response The developers assert that canApprove is true before approving an
address, as recommended.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

11

o U W N

Contents

4.1.3 V-MNFT-VUL-003: Oracle approval for updates can be bypassed

High 329479
Data Validation Fixed
packages/nft/src/contracts/collection.ts
Collection.update()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/26

In the Collection contract, the methods updatewithOracle() can be called to update a
particular NFT with admin and oracle approval. The proof provided as input to the method
contains an optional oracleAddress which can be used to link the NFT update with the network
and accounts state.

Similarly, the method update() takes in a proof as input and updates the NFT without approval
from the oracle. See snippet below for details.

@method async update(
proof: NFTUpdateProof,
vk: VerificationKey
): Promise<void> {
await this._update(proof, vk);

-

Snippet 4.4: Snippet from update()

Here, the update() function does not validate that the proofs publicly input oracleAddress is
empty. Therefore, it can be called with a proof containing an oracleAddress, to bypass the
oracle approval and validations.

Impact An NFT can be upgraded with approval from the admin, but without the additional
approval from the oracle. This would enable an attacker to bypass critical validations and checks
performed by the oracle in relation to the network state.

Recommendation In the update() method, check that the proof’s publicly input oracle
address is empty.

Developer Response The developers validate the proof.publicInput.oracleAddress is empty
when calling update() instead of updatewithOracle().

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/26

12 Contents

4.1.4 V-MNFT-VUL-004: isPaused is not updated when updating the NFT state

Medium o6s06ba
Data Validation Fixed
packages/nft/src/contracts/nft.ts
NFTupdate()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/27

The NFT.update () method is used to update the NFT’s state. The NFT contract’s state includes
packedData, which contains isPaused. This is used to verify whether the NFT is currently
paused or not. The output parameter for NFT.update () method represents the desired new state
of the NFT, after the updates have been made. However, output. isPaused is not saved to NFT
data, causing the desired value for isPaused to not be saved to the NFT state.

1 @method.returns(Field)

2 async update(

3 input: NFTState,

4 output: NFTState,

5 creator: PublicKey

6): Promise<Field> {

7 //[...elided]

8 // Veridise - Missing mechanism to save new value for isPaused to data.
9 data.owner = output.owner;

10 data.approved = output.approved;
11 data.version = output.version;

12

13 this.packedData.set(data.pack());
14 //[...elided]

15 }

Snippet 4.5: Snippet from update()

Impact No call to update() may change whether the NFT is paused or not.

Depending on the NFT implementation, this may prevent pausing in emergency scenarios.

Recommendation Add the new value for isPaused into NFT data.

Developer Response The developers now assign output.isPaused as data.isPaused similar
to the other NFT states.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/27

13

Contents

4.1.5 V-MNFT-VUL-005: Maliciously upgraded NFTs may mint new NFTs

Medium 329479

Data Validation Fixed
packages/nft/src/contracts/collection.ts
Collection

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/38

Since an AccountUpdate’s children may inherit its token ID, a malicious NFT implementation
could approve arbitrary AccountUpdates to create new Accounts with the Collection’s tokenId.
This is impossible with the default NFT verification key. However, if a malicious NFT upgrade
occurs, an attacker could use this ability to mint arbitrary NFTs to the Collection.

Impact If an admin fails to properly validate an upgrade, or owners are allowed to upgrade
their owned NFTs arbitrarily, malicious actors may mint NFTs without permission from the
admin or creator.

Recommendation Ideally, the Collection would validate that NFT updates have no children of
their own, as in the expected implementation of the NFT. Doing this is not easy with the current
oljs APIs. It would require iterating over the oljs AccountUpdateLayout to find the child update
representing an NFTAccountUpdate as an entry in the MerkleList of children, and then
validating that it itself has no children.

Instead, consider validating the NFT verification key hash matches the expected one on each
@method call.

Additionally, consider setting the NFT receive permissions to Permissions.impossible() to
ensure rogue NFT implementations cannot increase the balance on their account.

Developer Response I agree that validating AccountsUpdates is not easy, so the fix checks the
verification key on the upgrade and sets Permission.impossible() for NFT. It should be noted
that the balance is a symbolic value on the NFT account, as NFT is represented by the account
state and not the balance. Still, having the wrong balance is a problem for off-chain services
such as Explorers.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/38

14

© 00 N O U B W N =

11
12

Contents

4.1.6 V-MNFT-VUL-006: Oracle missing in equality check

Low 06506ba
Logic Error Fixed
packages/nft/src/interfaces/types.ts
NFTState.assertEqual()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/20

The function NFTState.assertEqual() checks that two NFTState instances are exactly equal. It
does this by asserting equality of each field of the two structs. However, the oracleAddress field
is left out of this function. Consequently, if two NFTStates a and b are exactly equal except
a.oracleAddress !'= b.oracleAddress, NFTState.assertEqual(a,b) will not cause an assertion
failure.

Fortunately, this function is only called once in the in-scope portion of the codebase: inside
NFT.update (). Immediately after it is invoked, the oracleAddress is checked to equal the
desired value.

NFTState.assertEqual(
input,
new NFTState({
// [VERIDISE] elided...
oracleAddress: input.oracleAddress,
i3}
);

// assert that the read-only fields are not changed
input.creator.assertEquals(output.creator);
NFTTransactionContext.assertEqual(input.context, output.context);

input.oracleAddress.assertEquals(output.oracleAddress);

Snippet 4.6: Snippet from NFT.update()

Impact The singular in-scope call-site cannot be exploited due to the extra check. However,
this may make the code more difficult to read and maintain.

Further, out-of-scope usage of this function may lead to errors in implementations of NFT
update contracts. For example, consider the merge () function provided in the NFTGameProgram
example:

merge: {

privateInputs: [SelfProof, SelfProof],

async method (
initialState: NFTState,
proofl: SelfProof<NFTState, NFTState>,
proof2: SelfProof<NFTState, NFTState>

) {
proofl.verify();
proof2.verify();
NFTState.assertEqual(initialState, proofl.publicInput);
NFTState.assertEqual(proofl.publicOutput, proof2.publicInput);
return {

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/20

15 Contents

13 publicOutput: proof2.publicOutput,
14 s

15 1,

16|},

Snippet 4.7: Definition of merge()

A malicious prover could use an arbitrary oracleAddress when creating proofl, then switch
back to initialAddress.oracleAddress when creating proof2 to pass the check in
NFT.update().

Recommendation Assert the two oracleAddresses are equal when asserting equality of
NFTStates.

Developer Response The developers now assert that the two oracle addresses are equal, as
recommended.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

16

v A W N =

Contents

4.1.7 V-MNFT-VUL-007: provedState in initialize method will always be false

Low 06506ba
Logic Error Fixed
packages/nft/src/contracts/collection.ts
Collection.initialize()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/25

The function this.account.provedState in Collection.initialize() will always be false, as
only 7 app-state fields are being set by a proof:

» 1for collectionName (Field)
» 2 for creator (PublicKey)

» 2 for admin (PublicKey)

» 1 for baseURL (Field)

» 1 for packedData (Field).

Consequently, the check in initialize() will not prevent an attacker from calling initialize()
multiple times.

@method

async initialize(masterNFT: MintParams, collectionData: CollectionData) {
this.account.provedState.requireEquals(Bool(false));
// [elided]..

-

Snippet 4.8: Snippet from initialize()

Impact Fortunately, Collection.initialize() still cannot be called twice. initialize()
internally calls the Collection._mint() method, which asserts that the newly minted master
NFT is a new Account.

async _mint(params: MintParams): Promise<MintEvent> {
const {name, address, data, metadata, storage, metadataVerificationKeyHash,
expiry, } = params;

// lelided]..
update.account.isNew.getAndRequireEquals().assertTrue("Is new failed");
// lelided]..

Snippet 4.9: Snippet from _mint ()

Future iterations of this standard may become susceptible to repeated initialization.

Further, protocol users will not be able to rely on provedState to check if initialize() has been
called and the project properly initialized via proof.

Recommendation To ensure that this.account.provedState will be true and initialize
method can only be called once, either this.init() can be called to initialize all 8 app-state
fields to zero, or the final 8th state can be set to zero manually in the initialize method.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/25

17 Contents

Developer Response The developers added a new state pendingCreatorX, taking the 8th field
in the state in the Collection. All the state fields have now been initialized via proof.

Updated Veridise Response This resolves the issue by setting all 8 fields. Additionally, the
Veridise analysts recommend:

1. Adding a comment to the function indicating that changes must be made if the number of
state fields available on the Mina blockchain changes.
2. Change the implementations of CollectionData.isPaused,

CollectionData.requireTransferApproval, and CollectionData.mintingIsLimited to use
the expression 4 + 32 + 64.

Updated Developer Response The developers have updated isPaused,
requireTransferApproval and mintingIsLimited to calculate the bits properly as per
recommendation, accounting for 4 flag bits due to pendingCreatorIsOdd being added. The
comments have also been added on initialize and deploy.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

18 Contents

4.1.8 V-MNFT-VUL-008: Permanently paused NFTs can be minted

Low 06506ba
Data Validation Fixed
packages/nft/src/contracts/collection.ts
mint()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/21

Collection._mint() takes in an authorized MintParams request and mints a new NFT. However,
it does not perform any checks that the minted NFT is consistent with its own configuration.

While most state is trivially consistent with the NFT’s configuration, there is one notable
exception. Some NFTs are unpausable, but nonetheless have an isPaused flag.

1| /** Specifies if the NFT contract can be paused, preventing certain operations (
readonly). */

2| canPause: Bool, // readonly

3| /** Indicates whether the NFT contract is currently paused. */

4| isPaused: Bool,

Snippet 4.10: Snippet fron NFTData in packages/nft/src/interfaces/types.ts

As seen below, if an unpausable NFT is minted, it cannot be resumed.

@method. returns(PublicKey)

async resume(): Promise<PublicKey> {
const data = NFTData.unpack(this.packedData.getAndRequireEquals());
data.canPause.assertTrue(NftErrors.noPermissionToPause);

A W N R

Snippet 4.11: Snippet from NFT. resume ()

Impact A malicious or buggy admin may intentionally mint users unusable NFTs.

For example, suppose a NFT gives rights to vesting funds which can be redeemed after a certain
time period, and expires if not eventually claimed. A scammer could mint paused, unpausable
NFTs. These NFTs would be unusable, preventing users from claiming their funds before the NFT
expires.

Recommendation Enforce the property that unpausable NFTs are not paused when minted.

Developer Response The developers now validate that unpausable NFTs are not set to paused
during the minting process.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/21

19

© 00 N O U B W N =

Contents

4.1.9 V-MNFT-VUL-009: Admin may change minted NFT address/owner

Low 06506ba
Data Validation Fixed
packages/nft/src/contracts/collection.ts
mint(

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/22

Minting an NFT within a Collection starts by specifying a MintRequest. This request consists of
an NFT address, NFT owner, and some arbitrary context data provided to the admin.

However, as shown in the below snippet, the actual _mint () operation is performed based on
the mintParams returned by the admin. Consequently, the minted NFT’s address and owner may
be unrelated to the mintRequest.

@method async mint(mintRequest: MintRequest): Promise<void> {
// [VERIDISE] extra checks elided....
const mintParams = (await adminContract.canMint(mintRequest)).assertSome(
CollectionErrors.cannotMint

)i

// [VERIDISE] extra checks elided....
await this._mint(mintParams);

-

Snippet 4.12: Snippet from Collection.mint()

Impact A malicious or buggy adminContract may mint an NFT unrelated to an owner
request.

For example, suppose some market mints an NFT in return for a user deposit, giving rights to
withdraw the funds in the future. A malicious prover network may be able to replace the
mintParams.owner with an address controlled by the prover network. The depositor will see a
mintRequest for an NFT owned by the depositor, but may unknowingly submit a transaction
minting an NFT to the malicious prover network.

Recommendation FEither do not allow the adminContract to specify the NFT address and
owner, or ensure the mintParams match the mintRequest.

Developer Response The developers now verify that the address and the owner in the
mintParams match the mintRequest.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/22

20

0 N o U W N

Contents

4.1.10 V-MNFT-VUL-010: Approved may be set when collection is paused

Low 06506ba
Logie Error Fixed
packages/nft/src/contracts/collection.ts
Collection.approveAddressByProof()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/28

The approveAddressByProof () method is used to approve an address to transfer the NFT. This
method is missing a validation to check if CollectionData.isPaused is false, which enables
approving addresses even when the collection is paused.

@method async approveAddressByProof (
nftAddress: PublicKey,
approved: PublicKey
): Promise<void> {
// Veridise - Missing check which validates that collection is not paused.
//[...elided]
this.emitEvent("approve", new ApproveEvent({ nftAddress, approved }));

}

Snippet 4.13: Snippet from approveAddressByProof ()

Additionally, there are several other actions within the collection which can be performed while
the collection is paused. These include mintByCreator(), mint(), approveAddressByproof(),
upgradeNFTVerificationKeyBySignature(), upgradeNFTVerificationKeyByProof(),
upgradeVerificationKey (), pauseNFTBySignature(), pauseNFTByProof (), resumeNFT() and
resumeNFTByProof (). And NFT.upgradeVerificationKey() can be performed when an NFT is
paused.

Out of these, the mintByCreator() is intended to work even with a paused collection to be able
to mint the Master NFT which holds the collection metadata. But, there is no documentation
which refers to the allowance or disallowance of the other mentioned actions, within a paused
collection.

Impact Addresses may be set as approvers even when the contract is currently paused.

Transfers will still not be possible while the contract is paused. However, depending on the
implementation of the owner contract, it may not be possible to reverse the unintended
approver change.

The concerns mentioned for approveAddressByProof () also extend to the other actions
mentioned in the description. Moreover, not documenting the behaviour of the mentioned
actions can lead to misplaced assumptions and usability concerns for collection creators.

Recommendation Add validation to check if the contract is currently paused using
CollectionData.isPaused.

Also, add documentation which lists the allowed and disallowed actions for a paused collection
and/or NFT, and add validations to the aforementioned functions accordingly.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/28

21 Contents

Developer Response The developers now check that the Collection is not paused when
Calling approveAddressByProof (), upgradeNFTVerificationKeyBySignature(),
upgradeNFTVerificationKeyByProof (), pauseNFTBySignature(), pauseNFTByProof(),
resumeNFT (), resumeNFTByProof (), setRoyaltyFee(), and setTransferFee().

The refactoring allowed the developers to remove the mintingIsLimited() function, see
V-MNFT-VUL-023.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

22

Contents

4.1.11 V-MINFT-VUL-011: Centralization Risk

Low 06506ba
Access Control Partially Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/41

Similar to many projects, Mina’s NFT Standard defines several roles/contracts which are given
special permissions or perform important validations for critical operations. The abilities of
these entities and their trust assumptions are outlined below.

This issue starts by outlining the roles for the core contracts, Collection and NFTs, then the
NFTAdmin. Then, it describes several items users should be careful of when implementing or
using instances of the standard.

The core contracts rely on various contracts which may depend on the particular application. In
particular, NFT owners, NFT approved spenders, NFT admins, and NFT oracle contracts may vary
from Collection to Collection and are not specified here.

Importantly, after discussions with the developers, the Veridise analysts understand that the
NFTStandardApproval, NFTStandardOwner, NFTStandardUpdate are templates that are not
intended to be used as-is, and are to be changed according to the case of the user. Veridise
analysts did review these contracts and found no flaws, but they are highly centralized wrappers
around a standard user accounts.

Protocol Contract Roles.

1. Collection:

a) deployer: This is any party who may produce signatures for the Collection.address.
The deployer has a highly privileged role, but only during deployment, initialization,
and network upgrades. The deployer may perform any of the following actions:

i) Set the permissions as specified during deployment.
ii) Upgrade the Collection during a hard fork.
iii) Initialize the Collection without permission of the admin/creator, allowing
them to determine the entire CollectionData initial state and set the "master
NFT".

b) creator: The Collection.creator receives fees based on the Collection’s configured
royalty and transfer fees, and may mint tokens. More specifically, the creator:

i) Receives fees determined by the Collection transferFee, NFT transfer price, and
Collection royaltyFee.
ii) Prevent users from transferring funds by setting their receive permissions to
impossible, causing fees to fail.
iii) Mint NFTs when the contract is not paused, and minting for the Collection has
not been limited (see the admin’s role below).
iv) Upon permission from the admin (see below), transfer the creator role.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/41

23 Contents

c) admin: The Collection.admin configures all of the Collection settings, including
metadata, fees, and the paused status. The admin is intended to be a smart contract,
whose implementation depends on the specific Collection instance. This smart
contract may:

i) Upgrade the Collection’s verification key to implement arbitrary logic.
ii) Configure the collection’s fees, name, and base URL.
iii) Pause and un-pause the Collection, and individual NFTs.
iv) Transfer admin rights to another account.
v) Transfer the creator role, upon approval by the creator.
vi) "Limit" NFT minting, i.e. permanently prevent future minting on this Collection.
vii) Mint NFTs when the contract is not paused, and minting for the Collection has
not been limited.
viii) Restrict updates to NFT-data.
ix) Restrict NFT transfers when the Collection is configured with
requireTransferApproval == true.
x) Upgrade NFT verification keys, with owner approval if required based on the
NFT’s data.

2. NFT: NFTs (when used properly) are deployed directly by the Collection. Depending on
their configuration when minted, there may still be some special roles with extra
authority over the particular NFT:

a) deployer: Whoever knows the private key may upgrade the NFT on hard forks.
b) owner: The owner may

i) transfer the NFT ownership based on signature or verification key (for NFTs with
canTransfer)
ii) set the approved address based on signature or verification key (for NFTs with
canApprove)
iii) prevent upgrading the NFT’s verification key for Collections with
isOwnerApprovalRequired

c) approved: An approved account may transfer the NFT ownership (for NFTs with
canTransfer).

d) metadataVerificationKeyHash: Anyone who can create a proof which verifies
against the metadataVerificationKeyHash may update the NFT itself (contingent
upon approval by the Collection admin). More precisely, the may:

i) Edit owner or approved (for NFTs with canChangeOwnerByProof, regardless of
canTransfer or canApprove)

ii) Edit the name, metadata, storage, isPaused, or metadataVerificationKeyHash
(for NFTs with canChangeName, canChangeMetadata, canChangeStorage, canPause,
and canChangeMetadataVerificationKeyHash, respectively).

iii) Set the NFT version arbitrarily high, causing denial-of-service.

Default Implementations.

1. NFTAdmin. This contract extends the class NFTAdminBase and serves as the foundational
administrative layer for the NFT collection. The address of the NFTAdmin contract
corresponds to the Collection.admin. It provides approval for critical functionalities
within the collection such as NFT upgrades, pausing and resuming operations and
ownership management. Note that this contract is upgradable, and therefore a malicious

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

24 Contents

admin can pose a signifiant threat to the collection. The contract has its own admin, which
is required to sign off on various (but not all) approvals in the default implementation.

a) admin: This account may perform any of the following actions

i) Upgrades the NFTAdmin’s verification key.
ii) Pause or resume the NFTAdmin contract.
iii) Transfers ownership of the contract to a new admin.
iv) Upgrade specific NFT verification keys (possibly with consent of the owner, if
required).
v) canChangeRoyalty() - Determines if the royalty fee can be changed for a
Collection.
vi) canChangeTransferFee() - Determines if the transfer fee can be changed for a
Collection.
vii) canPause() - Determines if the collection can be paused.
viii) canResume() - Determines if the collection can be resumed.

b) deployer: The deployer is the public key used to deploy the NFT collection contract.
It is responsible for

i) Correctly configuring the verification key and permissions for the zkApp.
ii) Upgrading the zkApp during hard forks.

Contracts providing approval for critical actions related to the NFT collection. The following
contracts are provided as templates in the project and are not meant to be used as is. Instead a
user deploying a collection should tailor them as per the requirements. But, these templates
provide a good estimate of trust assumptions on the part of the collection. For the default
implementations, the admin of the contract signs off on each permitted action, but the deployer
can change the VerificationKey unprompted, and therefore it remains fully in control.

1. NFTStandardApproval - This contract provides approval for transfers by proof, if the
owner of the NFT is a contract.

2. NFTStandardOwner - This contract is the default implementation of an NFT owner contract.
It provides approval for critical NFT actions like pause, resume, approve, transfer and
upgrade.

3. NFTStandardUpdate - This contract is a default implementation of the oracle. The oracle
optionally provides approval for an NFT update.

Impact As a standard intended for broad use across several implementations, the precise
impact of these centralization risks may be difficult to asses. Given this setting, the Veridise
team wishes to highlight some specific risks based on the above centralization issues:

1. Signature-based transfers: Transfers via signature cannot be prevented for an NFT. This
means that, for a third-party smart contract to truly own the NFT, their access permissions
must be set to proof-only. Otherwise, whoever knows the private key may bypass the
smart contract logic and transfer the NFT to themselves.

2. Creator dependence on admin-set fees: The Collection admins may set fees arbitrarily,
including to zero.

3. NFT owner dependence on admin-set fees: The Collection admin may set fees arbitrarily
high, preventing transfers.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

25

Contents

4. Use of "standard" contracts: Implementers may use the standard owner, updater, or
approver contracts.

5. NFT update risks: The metadataVerificationKey encodes logic which may arbitrarily
update the NFT (up to mutability flags), even when paused. This may fully DoS the NFT by
setting the version to UInt32.MAXINT(), preventing further transfers.

6. Rogue NFT updates on hard-forks: During a Mina hard-fork, the owner of an NFT’s
private key may upgrade the verification key. If Collection creators/admins do not
control these keys, it may lead to serious issues (see V-MNFI-VUL-005). Conversely, if
Collection creators/admins lose control of these keys, upgrades may be prevented.

7. Key loss / malicious action: As always, centralized roles may offer promising targets for
attackers, or be abused by role holders. Depending on the admin contract, this could
include a full contract upgrade, targeted denial of service to NFT holders, or theft of NFTs.

Recommendation Some of these issues should be mitigated through both user- and developer-
facing documentation.

1. Signature-based transfers: Users should validate contract permissions before trusting it
with ownership of their NFT.

2. Creator dependence on admin-set fees: NFT creators should validate the admin contract
has sufficient protections, or is operated by a trusted party, to prevent loss of fees.

3. NFT owner dependence on admin-set fees: NFT owners should validate the admin
contract has sufficient protections, or is operated by a trusted party, to prevent
prohibitively exorbitant of fees.

4. Use of "standard" contracts: NFT users should not use the standard contracts.

A few of the above issues may be mitigated by concrete action.

1. NFT update risks: Consider setting a maximum version increase for updates. Given
the current Mina block time of several minutes, this will ensure the version limit is not
reached before the next hard fork.

Finally, some problems are best mitigated through extensive care in the operational security
practices taken when operating the specified roles.

1. Rogue NFT updates on hard-forks: Collection admin/creators should own and operate
the keys of all NFTs, and carefully store them in a persistent manner (see
operational-security guidance below).

2. Key loss / malicious action: All deployer, administrative, and creator roles should take
care to follow security best practices (see below).

Privileged operations should be operated by a multi-sig contract or a decentralized governance
system. Non-emergency privileged operations should be guarded by a timelock to ensure there
is enough time for incident response. The risks in this issue may be partially mitigated by
validating that the protocol is deployed with the appropriate roles granted to the timelock and
multi-sig contracts.

Full validation of operational security practices is beyond the scope of this review. Users of the
protocol should ensure they are confident that the operators of privileged keys are following
best practices such as:

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

26

Contents

® NG

Never storing a protocol key in plaintext, on a regularly used phone, laptop, or device, or
relying on a custom solution for key management.

Using separate keys for each separate function.

Storing multi-sig keys in a diverse set of key management software /hardware services
and geographic locations.

Enabling 2FA for key management accounts. SMS should not be used for 2FA, nor should
any account which uses SMS for 2FA. Authentication apps or hardware are preferred.
Validating that no party has control over multiple multi-sig keys.

Performing regularly scheduled key rotations for high-frequency operations.

Securely storing physical, non-digital backups for critical keys.

Actively monitoring for unexpected invocation of critical operations and/or deployed
attack contracts.

Regularly drilling responses to situations requiring emergency response such as paus-
ing/unpausing.

Developer Response The developers added a best practices section in the readme, along with
BEST_PRACTICES.md . This documents best practices mentioned in the issue writeup.

Given that the collection creator is implementing his creative ideas by creating a collection,
some centralization, reflecting the creator’s role, should remain in the protocol. There have been

attempts in MinaNFT V2 to create a decentralized collection where everyone can add NFT, but

creators were very unhappy with it, and the developers have stopped this practice.

Additionally, the developers added the same doc on the documentation site: https://docs.
minanft.io/Documentation/v3/best_practices

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://docs.minanft.io/Documentation/v3/best_practices
https://docs.minanft.io/Documentation/v3/best_practices

27

Contents

4.1.12 V-MNFT-VUL-012: oljs best practices

Warning 06506ba
Maintainability Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/25,
https://github.com/SilvanaOne/silvana-lib/pull/40,
https://github.com/SilvanaOne/silvana-1lib/pull/41,

https://github.com/SilvanaOne/silvana-lib/pull/42,, e4744af,

alb55b5, 6356836

Consider implementing the following oljs best practices:
1. Avoid use of Unsafe APIs:

a) packages/nft/src/util/div.ts:

i) mulDiv(): Invoking Provable.witness(T, ...) returns an arbitrary
prover-supplied value. The only constraints on this value are imposed by
calling T.check() to ensure the value satisfies the type invariants of T.

In mulDiv (), when implementing the division algorithm, the quotient and
remainder are provided by Provable.witness(...), and then separately
range-checked. As shown below, this requires using the UInt64.Unsafe APIL.
Developers could avoid this by replacing MulDivResultInternal with a Struct
which specifies result and remainder as UInt64s rather than Fields. This will
ensure the Struct.check() function (which, by default, invokes check() on each
of its fields) will perform the range checks automatically.

1| const fields = Provable.witness(MulDivResultInternal, () => {
2 // Arbitrary prover code may be executed here

3 1)

4 Gadgets.rangeCheck64(fields.result);

5 Gadgets.rangeCheck64(fields.remainder);

6 // other checks required for division correctness ...

7 return {

8 result: UInt64.Unsafe.fromField(fields.result),

9 remainder: UInt64.Unsafe.fromField(fields.remainder),

| 3}

Snippet 4.14: Snippet from mulDiv ().

2. Avoid using native oljs types in events. Like Field, UInt32, UInt64, PublicKey, etc, so
that the semantics of each event are clear.

a) In the events defined in Collection.events, several make use of native oljs types, as
can be seen in the snippet below.

1 events = {

2 update: PublicKey,

3 //[...] elided

4 upgradeVerificationKey: Field,

5 //[...]1 elided

6 ownershipChange: OwnershipChangeEvent,

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/25
https://github.com/SilvanaOne/silvana-lib/pull/40
https://github.com/SilvanaOne/silvana-lib/pull/41
https://github.com/SilvanaOne/silvana-lib/pull/42

28

Contents
7 setName: Field,
8 setBaseURL: Field,
9 setRoyaltyFee: UInt32,
10 setTransferFee: UInt64,
11 setAdmin: PublicKey,
12 };

Snippet 4.15: Snippet from Collection.events.

Impact Not following best practices may lead to projects with reduced "by default" securi-
ty /usability, allowing simple errors to magnify into large mistakes.

Recommendation Follow the above oljs best practices.

Developer Response

1. The Unsafe usage has been documented clearly, and was kept to avoid reliance on an
undocumented feature of Provable.witness (). Additionally, an optimization (using
UInt64.assertLessThan()) was introduced.

2. The developer now uses custom event types for each event.

Additionally, the developers added some optimizations suggested by Veridise, including packing
and unpacking optimizations. Further, the developers increased the version size to 64 bits.

Finally, the developers added documentation for the flags and metadata to the github repository
and documentation site.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

29

Contents

4.1.13 V-MNFT-VUL-013: Duplicate and unused program constructs

Warning 06506ba
Maintainability Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/30

Description The following program constructs are unused or duplicate constructs:

1. packages/storage/src/storage/storage.ts:

a) Storage.isEmpty(): This function effectively inlines both Storage.equals() and
Storage.empty().

Impact These constructs may become out of sync with the rest of the project, leading to errors
if used in the future.

Developer Response The developers implemented the recommendation, removing duplicate
code.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/30

30

O© 00 N O U A W N =

=
(o)

Contents

4.1.14 V-MNFT-VUL-014: Incorrect URI/Symbol access control

i@ Warning 06506ba, €329d79

g8 Ll Access Control Fixed

File(s) packages/nft/src/contracts/collection.ts, packages/nft/
src/contracts/admin. ts

Location(s) Collection.deploy(), Admin.deploy()
Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/23,
https://github.com/SilvanaOne/silvana-1lib/pull/25

Collection.deploy() defines the AccountUpdate which deployers are expected to use when
deploying a Collection. The account permissions configured by deploy() are shown below.

The setzkappUri permission, which allows users to set the Collection’s zkappUri, and the
setTokenSymbol permission, which allows users to change the Collection’s token symbol, are
both set to Permissions.none(). This means any account update may change the zkappuri or
the token symbol.

Fortunately, the access permission is set to proof, preventing any non-proof authorized
AccountUpdates to the Collection account.

this.account.permissions.set({

...Permissions.default(),

setVerificationKey:

Permissions.VerificationKey.proofDuringCurrentVersion(),

setPermissions: Permissions.impossible(),

access: Permissions.proof(),

send: Permissions.proof(),

setZkappUri: Permissions.none(),

setTokenSymbol: Permissions.none(),

1)

Snippet 4.16: Snippet from Collection.deploy()

The same issues exists in the deploy() function of the default Admin contract.

Impact Future versions of the protocol may introduce ways for users to submit their own,
custom AccountUpdates, opening up the door to scams or introducing offensive content into a
creator’s Collection.

Recommendation Set the setZkappUri and setTokenSymbol permissions to be either
impossible or controlled via signature/proof in both the Collection and Admin contracts.

Developer Response The recommended changes have been implemented in the Collection
and the Admin.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/23
https://github.com/SilvanaOne/silvana-lib/pull/25

31 Contents

4.1.15 V-MNFT-VUL-015: Change of owner/admin does not use two step pattern

Warning 06506ba
Access Control Fixed

File(s) packages/nft/src/contracts/admin.ts, packages/nft/src/
_ contracts/collection.ts
Admin.transferOwnership() , Collection.setAdmin()
https://github.com/SilvanaOne/silvana-1lib/pull/25

When electing a new owner in the Admin contract, the current owner passes on the PublicKey of
the new owner to the transferOwnership() method.

@method. returns (PublicKey)
async transferOwnership(to: PublicKey): Promise<PublicKey> {
// l[elided]..
this.admin.set(to);
// [elided]..

o U A W N

Snippet 4.17: Snippet from transferOwnership()

Similarly, the setAdmin() method is used when changing admin in Collection contract.

@method
async setAdmin(admin: PublicKey): Promise<void> {
// [elided]..
this.admin.set(admin);
this.emitEvent("setAdmin", admin);

}

o U A W N

Snippet 4.18: Snippet from setAdmin ()

The ownership/adminship is immediately revoked and the new owner/admin has all the
administrative privileges. Making such critical changes in a single step can be error prone and
lead to irrecoverable mistakes.

Impact If an incorrect PublicKey is accidentally set as the owner, all the administrative
privileges will be lost. In this case, actions such as pausing or resuming can no longer be
performed.

Recommendation It is recommended to implement a two-step ownership transfer process,
where the new owner must confirm the acceptance of ownership before ownership from the
previous owner is revoked.

Developer Response The fix for Admin is as recommended, whereas the for Collection, a
different approach is taken. Only the x coordinate of the public key is stored as a state (as
pendingCreatorX) and a bool indicating if it is negative or not is stored in
collectionData.pendingCreatorIs0Odd.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/25

32

O© 00 N O U B W N =

T e T e R R B R S N
N o o A WN O E O

Contents

Updated Veridise Response The acceptOwnership() function in the Admin contract should
check that the pending admin is not the empty key. Otherwise, the Mina runtime will ignore
the AccountUpdate and allow anyone to transfer ownership of the Admin contract to the empty
public key.

This can be seen with the following test, which passes

it("Should accept ownership", async() => {
const tx = await Mina.transaction(whitelistedUsers[2],
async () => {
await (<NFTAdmin>adminContract).acceptOwnership()
}
);
await tx.prove();
assert.strictEqual(
(
await sendTx({
tx: tx.sign([whitelistedUsers[2].key]),
description: "mint",
1)
)?.status,
expectedTxStatus
);

3

The analysts recommend the following changes:

1. Instead of performing a 2-step transfer using two functions, consider transferring control
in a single step by requiring both the current admin and the pending admin to sign the
transferOwnership() transaction.

2. Make a similar change in the Collection contract.

3. Add in both positive and negatives tests for the Admin and Collection ownership
transfers.

Updated Developer Response Unfortunately, it is not always possible to make the transfer in
one step. There is no way for two wallet users to sign the same TX without exposing the private
keys, as the wallet always signs with the tx sender key. Also, there will be significant issues
with nonce and keeping the tx. Therefore, I would prefer to keep the process in two separate
transactions.

Updated Veridise Response This resolves the issue for the Collection, but does not fix the
issue in the Admin contract.

Updated Developer Response The developers now verify that the pending admin is not an
empty public key in the Admin contract as well.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

33

© 0 N OO U~ W N

e e
A W N R ©

Contents

4.1.16 V-MNFT-VUL-016: MintParams fee/tokenld unused

Warning 06506ba
Data Validation Fixed
packages/nft/src/contracts/collection.ts
mint(), initialize(), mintByCreator()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/24

mint() and mintByCreator() can be used to mint new NFTs within a Collection. Additionally,
initialize() mints a "master NFT" when initializing the Collection. All rely on MintParams
specified by either the creator or the admin.

In all three functions, the MintParams.tokenId and MintParams. fee values are unchecked.

/**
* Represents the parameters required for minting a new NFT.
*/
class MintParams extends Struct({
// [VERIDISE] elided other fields...

/*x* The token ID of the NFT. x/
tokenId: Field,
// [VERIDISE] elided other fields...

/*x The fee associated with minting the NFT. x/
fee: UInt64,
// [VERIDISE] elided other fields...

Ao

Snippet 4.19: Definition of MintParams.

Impact Admin contracts will not be able to manage multiple Collection.

Fees may be missed or go unpaid.

Recommendation Assert that the returned tokenId matches the Collection’s derived token
ID.

Remove fee from the MintParams struct.

Developer Response The developers made the following changes:

» They added a check for the tokenld.
» They added a fee and tokenld to MintEvent as this is required for indexing on minascan
explore that keeps track of the NFT prices.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/24

34 Contents

Updated Veridise Response After discussions with the developers, the Veridise understand
that the fee is intended to be a part of the MintParams to link it to the mint request and have it be
part of the MintEvent. This fee value is an arbitrary amount and an admin can choose to charge
whatsoever they wish to put in the event.

The Veridise analysts recommend additionally documenting that this fee is fully admin-

controlled to make this clear to implementers.

Updated Developer Response The developers added the requested docs.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

35 Contents

4.1.17 V-MNFT-VUL-017: Transfer event emitted twice

Warning 06506ba
Missing/Incorrect Events Fixed
File(s) packages/nft/src/contracts/collection.ts

Location(s) Collection.approvedTransferBySignature()
Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/31

The approvedTransferBySignature() event emits a transfer event. However, _transfer emits the

same event.
1| @method async approvedTransferBySignature(
2 params: TransferParams
3): Promise<void> {
4 // [VERIDISE] elided...
5 const transferEvent = await this._transfer({
6 transferEventDraft,
7 transferFee: collectionData.transferFee,
8 royaltyFee: collectionData.royaltyFee,
9 1)
10 // [VERIDISE] elided...
11 this.emitEvent("transfer", transferEvent);
12 }

Snippet 4.20: Snippet from approvedTransferBySignature()

Impact Off-chain listeners may incorrectly think multiple transfers occurred.

Recommendation Remove the second event emission.

Developer Response The developers removed the second event emission in
approvedTransferBySignature().

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/31

36

v A W N =

Contents

4.1.18 V-MNFT-VUL-018: Missing checks in Admin.deploy()

Warning 079
Data Validation Fixed
packages/nft/src/contracts/admin.ts
Admin.deploy()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/32

The Admin.deploy () function creates the AccountUpdate which admins should use to deploy the
Admin contract. However, there are no internal consistency checks to ensure that if the contract
is deployed with canBePaused = false, then isPaused = false.

If this does happen, then the contract cannot be resumed.

@method

async resume(): Promise<void> {
await this.ensureOwnerSignature();
this.canBePaused.getAndRequireEquals().assertTrue();
this.isPaused.set(Bool(false));

Snippet 4.21: Snippet from Admin. resume()
Impact Admins may waste gas or accidentally deploy an unresumable contract.

Since isPaused is only checked when Admin.admin is changed (or when pausing/resuming), this
may not be noticed immediately.

Recommendation Validate that canBePaused and isPaused are not both false before creating
the deployment AccountUpdate.

Developer Response The developers now validate isPaused is false when canBePaused is
false before creating the deployment AccountUpdate.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/32

37

N o o A WN =

Contents

4.1.19 V-MNFT-VUL-019: Pausability of the collection and admin are connected

Warning 329479
Usability Issue Fixed
packages/nft/src/contracts/admin.ts
NFTAdmin.pause()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/33

The method pause() is used to pause certain administrative actions in the NFTAdmin contract.
This method can only be called if the state field canBePaused is true. However, this same state
field is also used to indicate whether the NFT collection can be paused. Therefore, the
pausability of the collection and the admin are intertwined.

@method

async pause(): Promise<void> {
await this.ensureOwnerSignature();
this.canBePaused.getAndRequireEquals().assertTrue();
this.isPaused.set(Bool(true));
this.emitEvent("pause", new PauseEvent({ isPaused: Bool(true) }));

}

Snippet 4.22: Snippet from pause()

Having the same field denote the pausability of both these contracts may be surprising to NFT
implementers.

Impact If the admin cannot be paused, then the collection cannot be paused as well and vice-
versa. This can be problematic in cases where these two operations are performed independently
of each other.

Recommendation Add a separate state field to the admin to track whether it can be paused.

If the implementation is intended, then add documentation to ensure that users are made aware
of it.

Developer Response The developers added a separate boolean flag, allowPauseCollection,

to control pausability of the Collection. They also added several clarifying comments to Admin
fields.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/33

38

© 0 N O U~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22

Contents

4.1.20 V-MNFT-VUL-020: Admin may deploy unusable NFT vkey

Warning 329479
Under-constrained Circuit Fixed
packages/nft/src/contracts/collection.ts
Collection._mint()

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/34

The _mint() function deploys an NFT contract at a new Account after admin or creator approval
has been validated. The verificationKey is constrained using results from Provable.witness()
(arbitrary instances of the provable types provided at runtime by whoever generates the proof)
and two constants: the verification keys of the NFT contract compiled for the mainnet and
devnet proving systems.

Since isMainnet is an arbitrary Bool, a prover may choose to set verificationKey to either the
mainnet or devnet keys.

const verificationKey: VerificationKey = Provable.witness(
VerificationKey,
() == // [VERIDISE] arbitrary prover code

)

const mainnetVerificationKeyHash = Field(
nftVerificationKeys.mainnet.vk.NFT.hash
)
const devnetVerificationKeyHash = Field(
nftVerificationKeys.devnet.vk.NFT.hash
);
const isMainnet = Provable.witness(Bool, () => // [VERIDISE] arbitrary prover code
);
// We check that the verification key hash is the same as the one
// that was compiled at the time of the deployment
verificationKey.hash.assertEquals(
Provable.if(
isMainnet,
mainnetVerificationKeyHash,
devnetVerificationKeyHash

Snippet 4.23: Snippet from _mint()

Impact If the verification key comes from the wrong proving system, none of the NFT
functionality will work correctly. Consequently, a malicious admin or prover may mint a user
an unusable NFT.

Recommendation Instead of using Provable.if(), use a regular JavaScript if/else block.
Whichever path is taken at circuit-compilation time will be hard-coded into the circuit.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/34

39

© 00 N O U B W N =

N N N N NN B B B B B B2 B B B B9
U A W N B © O 0 N O U B W N P ©

Contents

For example, in the below code snippet, Contract® and Contract2 are identical when config is
false at compilation time, while Contract6 and Contract1 are identical when config is true at
compilation time.

let config: boolean = false;

class Contract® extends SmartContract {
@state(Bool) dummy = State<Bool>();
@method async noop(): Promise<void> {
if(config) {
const dummy = this.dummy.getAndRequireEquals();
dummy.assertTrue();

class Contractl extends SmartContract {
@state(Bool) dummy = State<Bool>();
@method async noop(): Promise<void> {
const dummy = this.dummy.getAndRequireEquals();
dummy.assertTrue();

class Contract2 extends SmartContract {
@state(Bool) dummy = State<Bool>();
@method async noop(): Promise<void> {

}

Developer Response The developers now use a regular JavaScript if/ else block instead of
Provable.witness() as per the recommendation.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

40 Contents

4.1.21 V-MNFT-VUL-021: Unused Imports

Warning 06506ba
Maintainability Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/35

The following are imported from o01js but never used within context of the files.

» SmartContract in contracts/collection.ts
» Field and Bool in interfaces/ownable.ts
» Fieldin interfaces/pausable.ts

Recommendation We recommend removing the unused imports.

Developer Response The developers removed the unused imports in
contracts/collection.ts and interfaces/pausable.ts.

Updated Veridise Response An earlier typo in the issue wrote interfaces/owner.ts instead
of interfaces/ownable.ts. This has been fixed in the issue text.

Updated Developer Response The additional import was removed.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/35

41

O W N OO U~ W N

e e e i =
0 N OO U~ W N R O

Contents

4.1.22 V-MNFT-VUL-022: from param unused in transfer functions

Syl Warning €329d79

g8 L8 Usability Issue Fixed

File(s) packages/nft/src/contracts/collection.ts
Location(s) Collection.transferBySignature(),
Collection.approvedTransferBySignature()
Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/36

The function transferBySignature() can be used to transfer an NFT without admin approval.
Correspondingly, its counterpart approvedTransferBySignature() requires approval from the
admin to transfer an NFT. If the NFT owner is a contract then transferByProof() and
approvedTransferByProof () can be used respectively.

The signature-based transfers rely on creating an AccountUpdate from the (unconstrained)
sender, and then checking that the sender is either the owner or the approved contract.
Consequently, as shown in the below snippet, the "params. from" address is ignored.

@method async approvedTransferBySignature(
params: TransferParams
): Promise<void> {
const { address, to, price, context } = params;
//[Veridise]
//...elided....
//[Veridise]
const transferEventDraft = new TransferExtendedParams({
from: PublicKey.empty(), // will be added later
//[Veridise]
//...elided....
1)
await this._transfer({
transferEventDraft,
//[Veridise]
//...elided....
1)

Snippet 4.24: Snippet from transferBySignaturet()

Impact Intentional misuse of this argument could affect audibility of traces, especially since
the emitted event always sets from to owner.

Further, there is a chance for the functions approvedTransferByProof() and
approvedTransferBySignature() to be associated with transferring an NFT using the approved
address due to the ambiguous naming.

Recommendation Consider removing the from parameter from the signature-based transfer
arguments.

Consider renaming the approved* transfer methods to adminApproveds.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/36

42 Contents

Developer Response The developers removed the from parameter from signature-based
transfer arguments.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

43 Contents

4.1.23 V-MNFT-VUL-023: Typos and missing/incorrect comments

Severity i) 06506ba

83418 Maintainability Fixed
File(s) See issue description
Location(s) See issue description
Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/37,
https://github.com/SilvanaOne/silvana-lib/pull/28

Description In the following locations, the auditors identified minor typos and potentially
misleading comments:

1. packages/nft/src/

a) contracts/collection.ts:

i) Collection.approveAddressByProof(): The nat-spec comment on this function
is incorrect.
ii) Collection._transfer():

1. The documentation for the function parameters in the nat-spec comment is
out of date.

2. The // TODO comment in _transfer() appears to be out of date.

3. The fee structure is not documented. Consider documenting this to ensure
admins set the transferFee is set correctly.

iii) Collection.transferOwnership(): Consider changing the documentation (and
possibly function name) to reference the creator, rather than referring to the
creator as the "owner." This could reduce possible confusion between
interpretations of both the admin and the creator as an "owner" of the
Collection contract.

b) interfaces/
i) events.ts:

1. UpgradeVerificationKeyEvent.tokenId: The documentation comment for

this variable describes the version number instead of the tokenId.
ii) types.ts:

1. NFTImmutableState.id: This field is described as "The unique identifier of
the NFT within the collection". However, it may be set arbitrarily by the
collection administrator and defaults to always zero. The documentation
should mention that non-admin users should not rely on this id for their
operations, and instead use the NFI’s public key and token ID to identify it.

2. NFTData: Add documentation which carefully lists the intended behavior
and uses for the various approval flags represented in NFTData.

a) .canChangeOwnerByProof: The document should indicate that this flag is
intended to be used only by the update() method, and that it overrides
both the canApprove and canTransfer flags.

b) .canApprove: The current documentation indicates that approved cannot
be changed when canApprove is false. However, approved is reset to
empty upon the first transfer. This edge case should be noted in the

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/37
https://github.com/SilvanaOne/silvana-lib/pull/28

44 Contents

documentation of the configuration flag. Additionally, the
documentation does not note that canApprove may be bypassed when
canChangeOwnerByProof is true.

c) .canTransfer: The documentation does not note that canTransfer may be
bypassed when canChangeOwnerByProof is true.

3. CollectionData.mintingIsLimited(): Add documentation to mention that
this particular method is not a getter for mintingIsLimited, or rename to
mintingIsLimitedOrPaused(), to avoid misusing it in the future.

Impact These minor errors may lead to future developer confusion.

Developer Response The developers implemented the recommendation.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

45

O© 00 N O U B W N =

Contents

4.1.24 V-MNFT-VUL-024: Recommended contract factory validations

Info 329479

Data Validation Fixed
packages/nft/src/contracts/collection.ts
See issue description

Confirmed Fix At https://github.com/SilvanaOne/silvana-lib/pull/41

The Mina NFT standard uses a new contract factory pattern for development. For example,
suppose a contract Foo is intended to call a contract Bar. Using the contract factory pattern, Foo
would access Bar by calling a function which returns a constructor for Bar, instead of just calling
Bar directly. An example can be seen in the below code snippet.

function FooFactory(barFactory: () => BarConstructor) {
class Foo extends SmartContract {
@method async foo(address: PublicKey) {
const barInstance = new BarConstructor() (address);
barInstance.bar();
}
)

return Foo;

-

Since the logic of Foo and Bar are compiled separately, taking this approach (instead of just
calling new Bar () directly) should not change the verification key of Foo.

This pattern allows users to more easily swap out different implementations of Bar, so long as
each implementation has a @method with the same signature as Bar.bar (). This is especially
helpful for the NFT standard, which expects users to have custom admin, owner, update, and
approver contracts.

Impact When compiling a class created with the factory pattern, users must call the factory to
get a concrete instance of the class, then compile that instance. To ensure that all the usual checks
performed when calling another smart contract are in place, this instance must be instantiated
with constructors of actual oljs smart contracts.

For example, a malicious compiler could use an overriden oljs smart contract whose
constructor sets its tokenId to an unconstrained variable, instead of a constant 1. This would
create an attack vector which may allow an attacker to maliciously deploy contracts with the
Collection’s tokenId.

Recommendation When using the factory pattern,

1. Compile the factory-created contract with concrete instantiations of the contracts it may
call.

2. Compile the factory-created contract with multiple different concrete instantiations of the
contracts it may call, and validate the vkey is unchanged.

3. Consider using Provable.isConstant() to check that the AccountUpdate produced by
method calls has a constant token ID of 1.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

https://github.com/SilvanaOne/silvana-lib/pull/41

46 Contents

const OwnerContract = ownerContract();

const owner = new OwnerContract(address);
assert(Provable.isConstant(Field, owner.self.tokenId))
Provable.assertEqual(Field, owner.self.tokenId, TokenId.default);
return owner;

v A W N =

Developer Response The developers included a best practices section in the readme, along
with BEST_PRACTICES.md . This contains sections Recommended contract factory validations
for developers and Best practices of contract factories which outline what was mentioned in
the issue writeup.

© 2025 Veridise Inc. Veridise Audit Report: NFT Standard

¥ Glossary

Mina Mina Protocol is a succinct 22KB blockchain utilizing zero-knowledge proofs. See
https://minaprotocol.com for more details. 1, 47

oljs A zero-knowledge TypeScript library which allows users to write zero-knowledge circuits
without writing constraints themselves. It is also used to write zkApps for the Mina
blockchain. For more information, see https://docs.minaprotocol.com/zkapps/oljs.
1

Semgrep Semgrep is an open-source, static analysis tool. See https://semgrep.dev to learn
more. 5

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 1, 47

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more. 47

zkApp A smart contract written for the Mina blockchain. See https://docs.minaprotocol.
com/zkapps/zkapp-development - frameworks for more. 47

Veridise Audit Report: NFT Standard © 2025 Veridise Inc.

https://minaprotocol.com
https://docs.minaprotocol.com/zkapps/o1js
https://semgrep.dev
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://docs.minaprotocol.com/zkapps/zkapp-development-frameworks
https://docs.minaprotocol.com/zkapps/zkapp-development-frameworks

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Security Assessment Goals and Scope
	Security Assessment Goals

	Security Assessment Goals
	Security Assessment Methodology & Scope

	Security Assessment Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MNFT-VUL-001: Admin approval for transfers can be bypassed
	V-MNFT-VUL-002: Approving a delegate address does not verify if changing approval is allowed
	V-MNFT-VUL-003: Oracle approval for updates can be bypassed
	V-MNFT-VUL-004: isPaused is not updated when updating the NFT state
	V-MNFT-VUL-005: Maliciously upgraded NFTs may mint new NFTs
	V-MNFT-VUL-006: Oracle missing in equality check
	V-MNFT-VUL-007: provedState in initialize method will always be false
	V-MNFT-VUL-008: Permanently paused NFTs can be minted
	V-MNFT-VUL-009: Admin may change minted NFT address/owner
	V-MNFT-VUL-010: Approved may be set when collection is paused
	V-MNFT-VUL-011: Centralization Risk
	V-MNFT-VUL-012: o1js best practices
	V-MNFT-VUL-013: Duplicate and unused program constructs
	V-MNFT-VUL-014: Incorrect URI/Symbol access control
	V-MNFT-VUL-015: Change of owner/admin does not use two step pattern
	V-MNFT-VUL-016: MintParams fee/tokenId unused
	V-MNFT-VUL-017: Transfer event emitted twice
	V-MNFT-VUL-018: Missing checks in Admin.deploy()
	V-MNFT-VUL-019: Pausability of the collection and admin are connected
	V-MNFT-VUL-020: Admin may deploy unusable NFT vkey
	V-MNFT-VUL-021: Unused Imports
	V-MNFT-VUL-022: from param unused in transfer functions
	V-MNFT-VUL-023: Typos and missing/incorrect comments
	V-MNFT-VUL-024: Recommended contract factory validations
	Glossary

