¥ Veridise
Auditing Report

Hardening Blockchain Security with Formal Methods

Mina Fungi

Veridise Inc.
August 05, 2024

» Prepared For:

Mina Foundation
https://minaprotocol.com

» Prepared By:

Benjamin Sepanski
Sorawee Porncharoenwase

» Contact Us: contact@veridise.com

» Version History:

Aug. 05,2024 V3 - Updated with fixes from oljs

Jul. 23, 2024 V2 - Updated with fixes from Mina Foundation

Jul. 07, 2024 Vi
Jul. 05, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://minaprotocol.com
contact@veridise.com

Contents

Contents 1ii
1 Executive Summary 1
2 Project Dashboard 5
3 Audit Goals and Scope 7
31 AuditGoals. e 7
3.2 Audit Methodology & Scope o 7
3.3 Classification of Vulnerabilities 8

4 Vulnerability Report 9
41 Detailed DescriptionofIssues 10
411 V-MIN-VUL-001: More than 500 pending mint/burns leads to DoS . . . 10

41.2 V-MIN-VUL-002: Tokens may be flash-minted without changing circulating 12

41.3 V-MIN-VUL-003: Lazy sum accumulation can enable overflow DoS . . . 14

414 V-MIN-VUL-004: CentralizationRisk 17

41.5 V-MIN-VUL-005: ForestIterator checks for exact match in MayUseToken 19
41.6 V-MIN-VUL-006: access permissions allows token deployer to mint tokens 23

417 V-MIN-VUL-007: Tokens default to unpaused 25
418 V-MIN-VUL-008: Missing event on stateupdate 27
419 V-MIN-VUL-009: transfer() overwrites balanceChange 28
4110 V-MIN-VUL-010: Unused and duplicate program constructs 29
4111 V-MIN-VUL-011: Best practices and recommendations 31
4112 V-MIN-VUL-012: Use of deprecated oljs functions 33
4113 V-MIN-VUL-013: Comments on tokendesign 34
Glossary 35

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

% Executive Summary

From Jun. 24, 2024 to Jun. 28, 2024, the Mina Foundation engaged Veridise to review the security
of their Mina Fungible Token Standard. The review covered the implementation of a standard
fungible token contract for the Mina blockchain, as well as the components in the oljs library
necessary to implement the contract. Veridise conducted the assessment over 2 person-weeks,
with 2 engineers reviewing code over 1 week on commits ebbc088a (mina-fungible-token) and
1588ee56 (0ljs). The auditing strategy consisted of extensive manual code review performed by
Veridise engineers.

Project summary. The security assessment covered two primary components: the smart
contracts implementing the token standard and the zero-knowledge circuit (ZK Circuit) imple-
menting the constraints using the oljs library. The token standard itself implements a fungible
token similar to popular standards such as the popular Ethereum ERC 20 standard.

To ensure compatibility across wallets and provers, the token contract itself is intended to be
used without alteration. Certain functions call to an administrator contract which may provide
custom logic for individual tokens. The token balances are maintained using Mina’s native
custom token feature, allowing for concurrent transfers. Other operations support concurrency
via the actions and reducer model.

To ensure composability with other contracts, entire trees of AccountUpdates may be processed
using utility functions implemented in the oljs library. These are implemented using a Merkle
List, which was also in scope of the review.

Code assessment. The Mina Foundation developers provided the source code of the Mina
Fungible Token Standard contracts and circuits for review. The source code appears to be
original code written by the Mina Fungible Token Standard and oljs developers. It contains
extensive documentation in the form of READMEs and other Markdown files*. Documentation
comments on functions and storage variables explain the purposes of individual program
constructs. To facilitate the Veridise auditors’ understanding of the code, the Mina Fungible
Token Standard developers also included several examples to illustrate the project’s intended
use.

The source code contains a test suite, which the Veridise auditors noted thoroughly tested each
operation. The test suite also includes checks to ensure that operations fail in expected cases
including unauthorized actions, insufficient balances, and incorrect transfer amounts.

Summary of issues detected. The audit uncovered 13 issues, 2 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, use of features still in beta leads to a
denial-of-service attack (V-MIN-VUL-001), and attackers may flash-mint tokens without affecting
the circulating supply (V-MIN-VUL-002). The Veridise auditors also identified 1 medium-severity

*https://github.com/MinaFoundation/mina- fungible-token/tree/eaf5a6b322/documentation

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://docs.minaprotocol.com/zkapps/writing-a-zkapp/feature-overview/custom-tokens
https://docs.minaprotocol.com/zkapps/writing-a-zkapp/feature-overview/actions-and-reducer
https://github.com/MinaFoundation/mina-fungible-token/tree/eaf5a6b322/documentation

1 Executive Summary

issue (V-MIN-VUL-003) which identifies a potential denial-of-service attack due to overflow in
a lazily-accumulated sum. The Veridise auditors additionally identified 3 low-severity issues, 3
warnings, and 4 informational findings. These include centralization risks (V-MIN-VUL-004,
V-MIN-VUL-006), improper handling of token ID permissions (V-MIN-VUL-005), and several
minor concerns.

Of the 13 issues, the Mina Foundation has fixed 9 issues and provided partial fixes to 3 more.
This includes fixes to all issues of low severity or higher, with the centralization issue (V-MIN-
VUL-004) marked as partially fixed. Note that the centralization issue is marked as partially
fixed since, by default, the token minting/burning/pausing is controlled by a single entity.
Mina Foundation has mitigated the possibility of malicious upgrades and recommended secure
practices for centralized parties in their documentation.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the Mina Fungible Token Standard.

Improved Documentation. The oljs access-control system is highly expressive, which carries with
it some complexity. In particular, understanding permissions surrounding the parent-child
relationship can be difficult and lead to issues such as V-MIN-VUL-005 and V-MIN-VUL-006.
The Veridise auditors recommend producing a detailed description of the following topics:

» The “access” permission: this permission field appears innocuous, but can have impor-
tant impacts on which AccountUpdates may be parents of others (see V-MIN-VUL-006).
This is mentioned in the documentation. However, a full reference document on the
allowed actions associated to each permission would be highly beneficial to auditors and
developers.

» Token IDs: each AccountUpdate is associated with a PublicKey and a tokenId. The allowed
values for a tokenId depend on the AccountUpdate’s parent and the two boolean flags
which make up its mayUseToken field. Any developer implementing a contract which
produces AccountUpdates with children must understand the full permission structure
implied by the restrictions on an AccountUpdate’s tokenId. Adding technical details to the
existing documentation on terminology describing the precise semantics of tokenIds will
help ensure they are used properly going forward.

Actions & Reducers. Actions and reducers, while powerful, come with heavy risks. Users may
provably submit actions, which are later processed by the reducer in sequence. This opens up a
generically applicable denial-of-service strategy in which an attacker submits an action which
is designed to trigger an assertion failure during reduction. Since reductions process actions
in the order which they were submitted, this may permanently shut down the contract. See
V-MIN-VUL-003 for an example.

The Veridise auditors have a few recommendations regarding both the Mina Foundation team’s
Mina Fungible Token Standard and to the oljs team’s design:

» Consider avoiding the actions and reducer model when possible. For example, leveraging
account token balances for purposes other than tracking token balances can allow users
to provide concurrent updates in some cases. See also the recommendation in V-MIN-
VUL-003.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

https://docs.minaprotocol.com/zkapps/writing-a-zkapp/feature-overview/permissions
https://docs.minaprotocol.com/zkapps/writing-a-zkapp/feature-overview/custom-tokens#custom-token-terminology

» Add additional documentation (and corresponding examples to the security best practices)
indicating that an validating an action submission must guarantee a successful reduction
computation.

» Consider whitelisting types allowed as action types. Attackers may leverage over-
constrained operations in the reducer to trigger a revert. For example, non-native elliptic
curve addition reverts when two points with the same x-coordinate are added together.

» One final option may be switching to a model in which actions may be processed in any
order. This could be done by changing the Merkle List to a Merkle Tree, or by allowing
callers to move actions into a separate Merkle Tree for out-of-order processing. The
trade-offs here must be considered carefully, as a user-controlled processing order may
create opportunities for front-running-style attacks such as sandwich attacks.

Redesigns. The Veridise team recommends reconsidering some of the design points regarding
proper handling of account update forest structures (V-MIN-VUL-002, V-MIN-VUL-004, V-
MIN-VUL-005, V-MIN-VUL-006, V-MIN-VUL-008) and handling actions and reducers (V-MIN-
VUL-001, V-MIN-VUL-003). Validating entire forest structures is a complex task, and may be
error-prone in general. Targeting a simpler input structure, such as limiting the input forest
to “send-receive pairs”, may make reasoning about the protocol simpler. As described above,
using actions and reducers come with their own risks and should be treated with great care.

Centralization. As described in V-MIN-VUL-004 and V-MIN-VUL-006, the default token imple-
mentation is centralized and puts a large amount of trust in the deployer. The Veridise auditors
recommend that the Mina Foundation developers include instructions for users on how to
assess the trust assumptions of a token based on its permissions and administrator.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

\Z Project Dashboard

Table 2.1: Application Summary.

2

Flaor

mina- fung1ble -token” ebbc088a
oljs” 1588ee56

“https://github.com/MinaFoundation/mina- fungible-token/

bhttps://github.com/ol—labs/oljs/

Table 2.2: Engagement Summary.

TypeScript
TypeScript

Mlna

Dl L Nethad L Consullants Engaged L Lovelof o

Jun. 24-Jun. 28, 2024 Manual

Table 2.3: Vulnerability Summary.

2 person-weeks

Adnovicized

Critical-Severity Issues

High-Severity Issues 2
Medium-Severity Issues 1
Low-Severity Issues 3
Warning-Severity Issues 3
Informational-Severity Issues 4
TOTAL 13

Table 2.4: Category Breakdown.

Maintainability

Denial of Service
Transaction Ordering
Data Validation

Access Control
Authorization
Missing/Incorrect Events
Usability Issue

Veridise Audit Report: Mina Fungible Token Standard

=N W= DN

3

—_ e = NN

O NN DN =N

© 2024 Veridise Inc.

https://github.com/MinaFoundation/mina-fungible-token/
https://github.com/o1-labs/o1js/

¥ Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of Mina Fungible Token Standard’s
smart contracts. In our audit, we sought to answer questions such as:

Does the token contract properly track balances and token supply?
Is authorization tracked during token transfers?
Can tokens be minted or burned without proper authorization?

vVvyVvyy

Can non-privileged entities perform administrative actions like pausing or upgrading the

contract?

» Are there any common programming/smart contract risks such as front-running, unused
variables, or unchecked returns?

» Can funds become locked?

» Are circuits properly constrained?

» Does the Merkle List implementation properly compute hashes? Is the encoding of its
inputs injective?

» Does iteration over the AccountUpdate forest visit all relevant AccountUpdates?

» Can actions trigger reversion during reduction?

» Are any known issues from other token standards present in the Mina Fungible Token

Standard?

3.2 Audit Methodology & Scope

Scope. The scope of this audit includes two repositories: the Mina Fungible Token Standard* and
oljs’. The Mina Fungible Token Standard scope is limited to the root folder of the source code
provided by the Mina Fungible Token Standard developers, which contains the smart contract
implementation of the Mina Fungible Token Standard. In the oljs repository, the following files
were in scope:

» src/lib/mina/token/*.ts
» src/lib/provable/merkle-1list.ts

Methodology. Veridise auditors reviewed the reports of previous audits for Mina Fungible
Token Standard, inspected the provided tests, and read the Mina Fungible Token Standard
documentation. They then began a manual review of the code. During the audit, the Veridise
auditors regularly communicated with the Mina Foundation developers to ask questions about
the code.

*https://github.com/MinaFoundation/mina- fungible-token/
t https://github.com/0l-labs/o0ljs/

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://github.com/MinaFoundation/mina-fungible-token/
https://github.com/o1-labs/o1js/

3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking

Not Likely NI MOSSRE M I Low i Medium
Likely [0 Wasming | Low. | Medium [0 High 0
Very Likely [oBoWe] Medium [g IR

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

¥ Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-MIN-VUL-001 More than 500 pending mint/burns leads to DoS High Fixed
V-MIN-VUL-002 Tokens may be flash-minted without changing. .. High Fixed
V-MIN-VUL-003 Lazy sum accumulation can enable overflow DoS Medium Fixed
V-MIN-VUL-004 Centralization Risk Low Partially Fixed
V-MIN-VUL-005 Forestlterator checks for exact matchin. .. Low Fixed
V-MIN-VUL-006 access permissions allows token deployer to. .. Low Fixed
V-MIN-VUL-007 Tokens default to unpaused Warning Fixed
V-MIN-VUL-008 Missing event on state update Warning Fixed
V-MIN-VUL-009 transfer() overwrites balanceChange Warning Open
V-MIN-VUL-010 Unused and duplicate program constructs Info Partially Fixed
V-MIN-VUL-011 Best practices and recommendations Info Partially Fixed
V-MIN-VUL-012 Use of deprecated oljs functions Info Fixed
V-MIN-VUL-013 Comments on token design Info Fixed

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

10

0 N o U WN

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-MIN-VUL-001: More than 500 pending mint/burns leads to DoS

Severity i ebbc088
Denial of Service Fixed
mina-fungible-token/FungibleToken.ts
mint(), burn(), calculateCirculating()

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/91, https:
//github.com/MinaFoundation/mina- fungible-token/pull/96

In order for a reduction to succeed, it must process all actions which have been submitted but
have not been processed. Otherwise, it will revert, with no possibility for recovery other than
upgrading the contract.

FungibleToken dispatches actions during mints or burns to allow for concurrent supply
changes. The getCirculating() and updateCirculating() methods compute the net supply
change by reduce()-ing over the accrued actions. Both methods use the utility function, which
configures the maximum number of actions per-reduction to be 500.

@method. returns(AccountUpdate)

async burn(from: PublicKey, amount: UInt64): Promise<AccountUpdate> {
this.paused.getAndRequireEquals().assertFalse()
const accountUpdate = this.internal.burn({ address: from, amount })
this.emitEvent("Burn", new BurnEvent({ from, amount }))
this.reducer.dispatch(Int64.fromUnsigned(amount).neg())
return accountUpdate

}

Snippet 4.1: Definition of burn()

As can be seen in the above snippet, anyone may burn tokens (if they have them to burn). This
allows any user to dispatch actions to the reducer.

Impact This attack is readily available to any user with an incentive to shut down the protocol.
For example, a user with no balance could submit 501 burn()s of a 0-amount.

Once over 500 actions have been dispatched, the reducer will no longer function, and no further
actions may be processed.

Recommendation Consider using a designated account’s balance in the token ID to track the
circulating balance. This has several benefits:

» Unlimited numbers of concurrent balance changes are supported.
» The circulating value will not need to be lazily computed.

Alternatively, provide functionality for a user to submit a recursive proof that they performed
the reduction on all of the outstanding actions as a recovery mechanism.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96

4.1 Detailed Description of Issues 11

Developer Response We no longer use the action/reducer model and instead rely on a
designed account balance.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

12

N o A WN

10

4 Vulnerability Report

4.1.2 V-MIN-VUL-002: Tokens may be flash-minted without changing circulating

caiad High 1588ee5, ebbc088
#8478 Transaction Ordering Fixed
File(s) mina-fungible-token/FungibleToken.ts
Location(s) approveBase()
Confirmed Fix At https:
//github.com/MinaFoundation/mina- fungible-token/pull/86

The approveBase() function allows users to process a large number of token transactions
without needing to generate each one with a call to transfer(). As shown in the below snippet,
approveBase() ensures the net balance change is 0. Additionally, Mina nodes ensure each
account’s token balance remains non-negative (not shown). These together imply conservation
of the currency after execution of the updates approved by approveBase (ignoring the possibility
of any mint()s or burn()s within the updates).

@method
async approveBase(updates: AccountUpdateForest): Promise<void> {
this.paused.getAndRequireEquals().assertFalse()
let totalBalance = Int64.from(0)
this.forEachUpdate(updates, (update, usesToken) => {
this.checkPermissionsUpdate(update)
totalBalance = Provable.if(usesToken, totalBalance.add(update.balanceChange),
totalBalance)
1)

totalBalance.assertEquals(Int64.zero)

}
Snippet 4.2: Definition of approveBase()

Note that conservation of the currency is not guaranteed between the updates executed inside
approveBase (). This allows users to effectively "flash-mint" tokens by

1. Including an AccountUpdate with a large positive balance change.

2. Using the funds to profit on some 3rd-party application.

3. Including an AccountUpdate with a large negative balance change to ensure currency
conservation.

On initial review, some may considered this a feature rather than a bug. However, this
flash-minting breaks one important invariant: no action is dispatched to update the
circulating supply. In particular, during any transaction execution, getCirculating() may
return a value entirely different from the total circulating supply.

Impact Misrepresentation of a token’s total supply can have severe consequences. For instance,
the below examples illustrate how this could be devastating for a voting protocol.

Note that, unlike with regular flash-minting which would have to go through a mint ()-type
function, this process occurs through a method without any calls to the admin contract. As a
consequence, the admin contract cannot turn off this behavior with the current token
implementation.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

https://github.com/MinaFoundation/mina-fungible-token/pull/86
https://github.com/MinaFoundation/mina-fungible-token/pull/86
https://blog.openzeppelin.com/flash-mintable-asset-backed-tokens

4.1 Detailed Description of Issues

Example 1. Consider a voting protocol which is the admin of a token contract. Users may
purchase 1 VoteTkn for 1 Mina by calling a deposit method in the admin contract, which
authorizes the minting of 1 VoteTkn to the depositor after some waiting period has passed.

Users may submit proposals to the admin contract on how to spend its accrued Mina. Token
holders may send their tokens to a proposal to vote for it. Each proposal is executed once it
reaches at least 2/3 of the circulating supply. After the proposal is executed, or at any time
before the vote ends, voters may reclaim their vote tokens.

An attacker holding 1 VoteTkn may break this system by the following sequence of actions:

1. Create a proposal to send them all of the Mina.
2. In a single transaction:

a) Flash-mint themselves enough votes to pass the proposal.
b) Vote on and execute the proposal.

¢) Reclaim the vote tokens.

d) Pay back the flash-mint.

While this could be prevented by requiring a transaction to pass between a successful vote and
proposal execution, developers may believe the time delay on purchasing VoteTkns is sufficient
to protect against attacks and leave out the extra protection.

Example 2. The above example illustrates that flash-minting without admin authorization can
lead to unforeseen consequences. In this example, we demonstrate how the mismatch between
circulating tokens and getCirculating() can make this problem worse.

Note that one intended property of the above protocol is the following: No two proposals may
be executed simultaneously. For a proposal to execute, it must have at least 2/3 of the supply.
Once it starts executing, those funds are locked until it finishes, so no other proposal should
also have 2/3 of the supply.

Flash-minting without changing the result of getCirculating() allows someone to avoid this
problem. An attacker may flash-mint themselves enough votes to execute every proposal, since
each flash-mint does not change the "denominator" of the computation.

This can be exploited if, for example, two proposals are designed explicitly to be mutually
exclusive. Suppose multiple teams are bidding to purchase a set amount of protocol funds, and
each proposal’s execute () method checks:

1. The proposal contract has sufficient votes.
2. The current round is the expected proposal round.

An attacker may then create their own proposal which executes all of the bidder’s proposals,
despite each bidder requiring they have 2/3 of the vote in that round.

Recommendation Require that totalBalance <= 0 after each update to totalBalance inside
forEachUpdate().

Developer Response approveBase() now checks that totalBalance is non-positive after each
balance update.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

13

14

© 00 N O U B W N =

e e i e
o U A W N B O

4 Vulnerability Report

4.1.3 V-MIN-VUL-003: Lazy sum accumulation can enable overflow DoS

Medium cbbc08s
Denial of Service Fixed
mina-fungible-token/FungibleToken.ts
mint(), burn(), calculateCirculating|()

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/91, https://github.com/MinaFoundation/
mina-fungible-token/pull/96, https:
//github.com/MinaFoundation/mina- fungible- token/pull/101

As described in V-MIN-VUL-001, mint ()-ing or burn()-ing dispatches an action to the reducer
describing the change in circulating supply. When the circulating supply is computed, these
changes are aggregated into a single UInt64.

private calculateCirculating(
oldCirculating: UInt64,
pendingActions: MerklelList<MerklelList<Int64>>,
): UInt64d {
let newCirculating: Int64 = this.reducer.reduce(
pendingActions,
Int64,
(circulating: Int64, action: Int64) => {
return circulating.add(action)
b
Int64.from(oldCirculating),
{ maxUpdatesWithActions: 500 },
)
newCirculating.isPositive().assertTrue()
return newCirculating.magnitude

Snippet 4.3: Definition of calculateCirculating()

Importantly, the final sum of the unprocessed actions must:

1. Fit within an Int64, i.e. the (non-standard) range [—2%* + 1,2%* — 1], in every intermediate
computation.

2. Leave the circulating supply non-negative (see V-MIN-VUL-012 for a description of
isPositive()).

If either of these does not hold, then the circulating supply cannot be computed. While property
2 may be fixed by issuing mints, property 1 cannot be fixed by adding more actions.

Impact If property 1is ever violated, there is no mechanism to recover from this state. The
calculateCirculating() function (used by both getCirculating() and updateCirculating())
would be permanently DoS’ed.

Fortunately, mint ()s are controlled by the admin. However, as described in V-MIN-VUL-002,
users may currently "flash-mint" themselves large amounts of tokens. For tokens which
represent wrapped underlying tokens, this may allow any user to DoS the protocol via a
flash-mint, burn, deposit, withdraw sequence.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96, https://github.com/MinaFoundation/mina-fungible-token/pull/101
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96, https://github.com/MinaFoundation/mina-fungible-token/pull/101
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96, https://github.com/MinaFoundation/mina-fungible-token/pull/101
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/MinaFoundation/mina-fungible-token/pull/96, https://github.com/MinaFoundation/mina-fungible-token/pull/101

4.1 Detailed Description of Issues

If the flash-minting issue is fixed, this may still become a problem, though it is less likely. 64
bits is just over 19 decimals. Assuming at most 500 pending actions at any given time (see
V-MIN-VUL-001) and a token with 9 decimals, this leaves 3.6 - 107 tokens-per action which must
be submitted. For many common applications, this is likely to be difficult. However, for tokens
with the following properties, this will still be exploitable:

» Tokens with large numbers of decimals (e.g. 12).

» Tokens with extremely low economic value.

» Tokens which may be flash-minted.

» Tokens which wrap other vulnerable tokens as underlying assets.

Recommendation As recommended in V-MIN-VUL-001, consider aggregating the circulating
supply into the balance of a designed account, rather than tracking in state.

Developer Response Instead of using actions and reducers to update the current circulation
in the contract state, we now use an account where the balance corresponds to the current
circulation.

» We use an account with the key of the token contract.

» The account balance is updated at every call of mint() and burn().

» The approveBase() method checks that none of the involved AccountUpdates involve this
special account.

Updated Veridise Response

» mint() and burn() should check that the recipient is not this.address. If not, the
minting /burning will be double-count in the total supply.

» transfer() should check that from and to are not this.address. This is particularly
important, since the account at this.address has sending permissions set to none(). This
will also prevent the contract deployer from transferring funds.

Out of an abundant sense of caution, it may be worth making the circulating supply account’s
permissions more restrictive. Of special note is the setPermissions permission.

Updated Developer Response We added checks in transfer(), mint(), and burn() to prevent
unexpected changes in the circulatingSupply address.

Updated Veridise Response Upon further review, we have some additional concerns regarding
the circulating-supply account.

1. The permissions for the circulating-supply account are shown below

{
editState: Permission.proof(),
send: Permission.none(), // Only difference from Permissions.default()
receive: Permission.none(),
setDelegate: Permission.signature(),
setPermissions: Permission.signature(),

S U A W N P

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

15

16

4 Vulnerability Report

10
11
12
13
14
15

setVerificationKey: Permission.VerificationKey.signature(),

setZkappUri: Permission.signature(),

editActionState: Permission.proof(),

setTokenSymbol: Permission.signature(),

incrementNonce: Permission.signature(),

setVotingFor: Permission.signature(),

setTiming: Permission.signature(),

access: Permission.none(),
1
While the Veridise auditors cannot identify a means by which the owner may create a
child AccountUpdate at the circulatingSupply address which changes the permissions,
further restricting setPermissions to Permission.impossible() may provide additional
insurance that a compromised or malicious token deployer cannot change the
circulatingSupply permissions to DoS the protocol or steal tokens.

. As described in https:/ /github.com/ol-labs/o0ljs/issues /1439, AccountUpdates changing

token balances of Accounts (including but not limited to the circulatingSupply account)
may be performed before the smart contract is deployed. While the isNew check in the
deploy() transaction protects the deployer from being front-run, a malicious or
compromised deployer may intentionally change the deployment transaction to not
assert isNew. This allows a malicious deployer to pre-initialize accounts with large
amounts of funds. Consider documenting this possibility and recommending any wallet
checks that isNew was set in a token’s deployment before using that token.

Updated Developer Response We now initialize the circulatingSupply account’s

setPermissions permission to Permission.impossible().

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

© 00 N O U A W N =

e i e =
Uu A W N R O

4.1 Detailed Description of Issues 17

4.1.4 V-MIN-VUL-004: Centralization Risk

Severity @¥g%y ebbc088
g3 L8 Access Control Partially Fixed

File(s) See issue description
Location(s) See issue description
Confirmed Fix At https:
//github.com/MinaFoundation/mina- fungible-token/pull/99

Similar to many projects, Mina’s fungible token standard declares an administrator role that is
given special permissions. In particular, these administrators are given the following abilities:

» Minting tokens.
» Pausing/unpausing the contract.

This administrator role is intended to be a smart contract. The default implementation is
managed by a privileged entity who knows the secrete key associated to the admin contract’s
adminPrivateKey field.

Additionally, token contracts (by default) use oljs” default smart contract permissions, with
access overridden to Permission.proofOrSignature(). As shown in the below snippet, this
means that both contract upgradeability and contract permissions may be changed by the
contract deployer, i.e. whoever knows the private key associated to the smart contract’s
address.

If that user is compromised, then the token balances will also become compromised. By
upgrading the contract, the attacker may mint themselves an arbitrary number of tokens, or
otherwise change the behavior of the token contract as they desire.

default: (): Permissions => ({
editState: Permission.proof(),
send: Permission.proof(),
receive: Permission.none(),
setDelegate: Permission.signature(),
setPermissions: Permission.signature(),
setVerificationKey: Permission.VerificationKey.signature(),
setZkappUri: Permission.signature(),
editActionState: Permission.proof(),
setTokenSymbol: Permission.signature(),
incrementNonce: Permission.signature(),
setVotingFor: Permission.signature(),
setTiming: Permission.signature(),
access: Permission.none(),

Iop

Snippet 4.4: Default permissions for oljs smart contracts.

Impact If a private key were stolen, a hacker would have access to sensitive functionality that
could compromise the integrity of the token.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://github.com/MinaFoundation/mina-fungible-token/pull/99
https://github.com/MinaFoundation/mina-fungible-token/pull/99

18 4 Vulnerability Report

Recommendation As these are all particularly sensitive operations, anyone deploying a token
should utilize a decentralized governance or multi-sig contract as opposed to a single account,
which introduces a single point of failure.

Additionally, any user purchasing a token should investigate the key management practices of
the token deployer and validate the token contract permissions as one should with any oljs
application.

Developer Response Documentation has been added describing the admin role’s privileges
and recommending strong security practices for centralized admin contracts.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

o U A W N

4.1 Detailed Description of Issues

4.1.5 V-MIN-VUL-005: ForestIterator checks for exact match in MayUseToken

Gl Low 1588ee5

#8748 Data Validation Fixed
File(s) src/lib/mina/token/forest-iterator.ts

Location(s) next()
Confirmed Fix At https://github.com/o0l-labs/0ljs/pull/1741

The TokenAccountUpdateIterator iterates over an AccountUpdate forest using a pre-order
depth-first traversal. It does this by maintaining a stack of Merkle lists, each representing the
siblings of the current node’s ancestors which have yet to be processed. Since ZK Circuits are
limited in their size at compile time, callers can only support a fixed number of iterations.

To help mitigate this problem, the TokenAccountUpdateIterator attempts to skip sub-trees
which may not update the derived token id of the token contract. To do so, the iterator skips the
children of the current accountUpdate if the accountUpdate is either

1. An AccountUpdate for the token contract itself. This tree will be verified independently
during transaction validation.

2. An AccountUpdate whose tokenId cannot be the token’s derived token-id, nor can any of
its children’s.

// if we don’t have to check the children, ignore the forest by jumping to its end
let skipSubtree = canAccessThisToken.not().or(isSelf);
childForest.jumpToStartIf(skipSubtree);

Snippet 4.5: Snippet from next () which skips the child subtree if either case (1.) (isSelf) or
case (2.) (canAccessThisToken.not()) is true.

Identifying case (1.) is easy. Identifying case (2.) has two sub-cases:

1. Top-level: if accountUpdate.mayUseToken.parentsOwnToken is true, the account update’s
token id may be set to the token contract’s derived token ID

2. Not top-level: Since (by (1.)) all AccountUpdates which could derive the token contract’s
derived token ID are skipped, we know that the derived ID of the parent of this inner
node is not equal to the token contract’s derived token ID. Therefore, the only way we can
use the token contract’s derived token ID is if we inherit it from our parent. In particular,
accountUpdate.mayUseToken.parentsOwnToken must be true.

To implement the check for case (2.), an invariant is maintained on the iteration "layers" stored
in the stack. layer.mayUseToken is MayUseToken.ParentsOwnToken iff its layer is the top-level.
Otherwise, layer.mayUseToken is MayUseToken.InheritFromParent. So, the developers can
determine whether this account update’s children can access this token by comparing
accountUpdate.mayUseToken.parentsOwnToken to the current layer’s mayUseToken field.

// check if this account update / it’s children can use the token
let canAccessThisToken = Provable.equal(

MayUseToken.type,

update.body.mayUseToken,

this.currentLayer.mayUseToken
);

Snippet 4.6: Computation of canAccessThisToken.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

19

https://github.com/o1-labs/o1js/pull/1741

20

A W N

O 00 N O U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

4 Vulnerability Report

Unfortunately, as described in the oljs audit report, the mayUseToken has four representations:

1. {parentsOwnToken: false, inheritFromParent: false}

2. MayUseToken.InheritFromParent := {parentsOwnToken: false, inheritFromParent:
true}
3. MayUseToken.ParentsOwnToken := {parentsOwnToken: true, inheritFromParent: false}

4. {parentsOwnToken: true, inheritFromParent: true}

This fourth case is accepted by the VM, and treated as equivalent to case 2.

In particular, this causes the iteration to skip any account update with both flags set to true.
This can be seen in the below code snippet, in which iteration skips the entire bottom level of a
tree of account updates.

et updates: AccountUpdate[] = []
const length = 7;
for(let 1 = 0; i < length; ++1i) {
let update = AccountUpdate.defaultAccountUpdate(alexa.publicKey, token.
deriveTokenId());
update.label = ‘Update ${i}‘;
updates.push(update);
}

// forest[0]
// Build a complete, 3-level tree
// to

// tl t2

// t3 t4 t5 t6
updates[3]!.body.callDepth =
updates[4]!.body.callDepth =
updates[5]!.body.callDepth =
updates[6]!.body.callDepth =
updates[1]!.body.callDepth =
updates[2]!.body.callDepth =
updates[0]!.body.callDepth =

SO R F NN NN

let trees: AccountUpdateTree[] = []
for(let 1 = 0; i < length; ++i) {

let update = updates[il]!;
update.body.mayUseToken = update.body.callDepth ===
? { parentsOwnToken: new Bool(true), inheritFromParent: new Bool(false) }
: { parentsOwnToken: new Bool(true), inheritFromParent: new Bool(true) };
update.body.balanceChange = update.body.callDepth === 2 ? new Int64(new UInt64(100n
)) : Int64.zero;
trees.push(AccountUpdateTree. from(update))
}
trees[1]!.children.push(trees[3]!)

trees[1]!.children.push(trees[4]!)
trees[2]!.children.push(trees[5]!)
trees[2]!.children.push(trees[6]!)
trees[0]!.children.push(trees[1]!)
trees[0]!.children.push(trees[2]!)

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

O© 00 N O U B W N =

N N B B B B B B B
H © W 00 N o U B W N H O

4.1 Detailed Description of Issues

// top-level tree to forest
let forest = AccountUpdateForest.empty();
forest.push(trees[0]!);

// Iterate over the forest so we can see what will be accessed!

let iterator = TokenAccountUpdateIterator.create(forest, token.deriveTokenId());

for(let i =0; 1 <7; ++i) {
let {accountUpdate, usesThisToken} = iterator.next();
Provable.log(i, usesThisToken, accountUpdate.toPretty())
}

console.log("Attack transaction.")
const attackTx = await Mina.transaction({
sender: feepayer.publicKey,
fee,
}, async () => {
AccountUpdate. fundNewAccount (feepayer.publicKey, 1);
await token.approveBase(forest);
1)
console.log(attackTx.toPretty());
await attackTx.prove()
attackTx.sign([feepayer.privateKey, alexa.privateKey])
const attackTxResult = await attackTx.send()
console.log("Attack tx:", attackTxResult.hash)
await attackTxResult.wait()

await printTxn(attackTx, "Attack tx", legend)
await showTxn(attackTx, "Attack tx", legend)

Snippet 4.7: Malicious AccountUpdate tree construction. This PoC can be used in the setup

provided by examples/concurrent-transfer.eg.ts

This outputs

0 true {
label: ’Update 0',

1 true {
label: 'Update 27,

2 true {
label: ’'Update 17,

3 false {
label: ’'Dummy’,

4 false {
label: ’'Dummy’,

5 false {

Veridise Audit Report: Mina Fungible Token Standard

© 2024 Veridise Inc.

22

22
23
24
25
26
27
28

4 Vulnerability Report

label: ’'Dummy’,

}
6 false {
label: ’'Dummy’,

}

As a consequence, AccountUpdates which may not provably ignore token balances will be
ignored by the iterator.

However, when a transaction is hashed by the network, it serialized and then de-serialized.
During serialization, the mayUseToken field is validated to have at most one true flag, preventing
this attack from successfully executing on the network.

Impact Currently, it seems this can attack cannot be executed due to the serialization and
de-serialization routines. However, changes to the codebase could enable this attack in the
future if it is not carefully documented for developers.

Recommendation Since the checks preventing this attack are far from the in-scope code and
not familiar to the auditors, we recommend the Mina team take extra care to validate that there
is no path by which a transaction can be submitted without being de-serialized.

At the very least, add documentation to the AccountUpdate struct and the relevant portion of the
mina repository indicating the importance of checking that mayUseToken has at most one true
boolean flag.

A more robust fix would ensure this situation cannot occur within any valid proof. To do this,
consider updating the check() function of AccountUpdate to rule out the {true, true} case.

Developer Response We rate this as more severe than a warning. We want correct code
execution to be proven and be universally verifiable, and not rely on each node operator to
check wellformedness on deserialization.

Updated Veridise Response We have updated the severity and recommendation.

Updated Developer Response We updated check() inside of oljs-bindings to validate that
not both inheritFromParent and parentsOwnToken are set. Additionally, the Mina
account_update constructor now parses the MayUseToken into one of the three allowed variants,
erroring on the {true, true} case.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

© 0 N O U~ W N

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

4.1 Detailed Description of Issues 23

4.1.6 V-MIN-VUL-006: access permissions allows token deployer to mint tokens

Severity ¥’y ebbc088

#3408 Authorization Fixed
File(s) mina-fungible-token/FungibleToken.ts

Location(s) deploy()
Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/99/files

Since access permissions are (by default) set to proofOrSignature, an owner may attach
arbitrary account balance updates beneath an AccountUpdate to the deployed smart contract
which does not require proof authorization, e.g. a nop AccountUpdate or a receive

AcccountUpdate.
console.log("Attack transaction.")
const attackTx = await Mina.transaction({
sender: feepayer.publicKey,
fee,
}, async () => {
AccountUpdate. fundNewAccount (feepayer.publicKey, 1)
let nopUpdate = AccountUpdate.defaultAccountUpdate(token.address, token.tokenId);
let maliciousUpdate = AccountUpdate.defaultAccountUpdate(alexa.publicKey, token.
deriveTokenId());
maliciousUpdate.balanceChange = new Int64(new UInt64(100n));
maliciousUpdate.body.mayUseToken = {parentsOwnToken: new Bool(true),
inheritFromParent: new Bool(false)}
AccountUpdate.attachToTransaction(nopUpdate);
nopUpdate.approve(maliciousUpdate);
nopUpdate.requireSignature();
maliciousUpdate.requireSignature();
1)

await attackTx.prove()

attackTx.sign([feepayer.privateKey, contract.privateKey, alexa.privateKey])
const attackTxResult = await attackTx.send()

console.log("Attack tx:", attackTxResult.hash)

await attackTxResult.wait()

console.log(attackTx.toPretty())

Snippet 4.8: Snippet showing how a token deployer can generate an unlicensed mint by
attaching it to a nop AccountUpdate.

Impact

1. The amount of trust placed in the token deployer is (by default) total. Signature access
permissions are required for other signature-authorized permissions like upgrading,
setting permissions, or setting the URI in the default smart contract permissions. While

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://github.com/MinaFoundation/mina-fungible-token/pull/99/files
https://github.com/MinaFoundation/mina-fungible-token/pull/99/files

24 4 Vulnerability Report

the owner is already a privileged actor by default, this is an important action they can
perform which may be unexpected to users of the token.

2. Whenever someone upgrades a token contract to be "non-upgradeable," users must check
that the owner set access permissions to proof only.

Recommendation Document this possibility clearly in the token contract, on the permissions
documentation, and on the documentation of the "approve" function.

Consider changing the default behavior to upgrading/changing permissions via a check with
the admin contract, and defaulting smart contract access permissions to proof-only.

Developer Response Permissions for access are now set to proof-only. We've also added a
@method to upgrade the contract when the oljs version changes.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

A W N R

4.1 Detailed Description of Issues 25

4.1.7 V-MIN-VUL-007: Tokens default to unpaused

SEstal Warning ebbc088

§8 S W Data Validation Fixed
File(s) mina-fungible-token/FungibleToken.ts

Location(s) deploy()
Confirmed Fix At https:
//github.com/MinaFoundation/mina-fungible-token/pull/85

The FungibleToken.deploy() function initializes the contract state. As seen in the below snippet,
token deployments initialize paused to False. Consequently, tokens will be active as soon as
they are deployed.

this.admin.set(props.admin)
this.circulating.set(UInt64.from(0))
this.decimals.set(props.decimals)
this.paused.set(Bool(false))

Snippet 4.9: Snippet from deploy ()

Impact Launching tokens as unpaused by default may open users to bugs in deployment
scripts. Effectively, it requires that the token admin is properly configured when the token itself
is deployed. This may not be the case for all deployments, and a careless user might leave
themselves open to exploit for a brief period of time.

In the below example, we describe a situation in which a non-atomic deployment may lead to
direct theft of funds. While this does require a user mistake, improving defaults may reduce the
number of incidents like the one below.

For example, suppose that a user is deploying a token contract which is intended to represent
shares in a vault (depositing m mina should mint m tokens if there are no tokens, or

m * vault.balance / circulating otherwise). The admin contract should authorize mints
when users deposit funds into the vault. Suppose further that the user sets up their protocol in
multiple transactions, executed in this order:

1. Deploy token admin contract, with admin.vault state variable set to a dummy address.
2. Deploy token contract.

3. Deploy vault contract.

4. Set admin contract admin.vault state variable to vault contract address.

Between steps 2 and 3, an attacker may send funds to the dummy address, minting themselves
tokens with no underlying funds in the actual vault. This now changes the ratio of the token’s
total supply to the vault’s funds. After the next unsuspecting depositor deposits in the vault,
they will now receive m * vault.balance / circulating = @ tokens instead of m. The attacker
can now withdraw those funds from the vault.

Recommendation Add paused to the FungibleTokenDeployProps passed into the deploy ()
function, and recommend initializing to paused for non-atomic multi-contract deployments.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://github.com/MinaFoundation/mina-fungible-token/pull/85
https://github.com/MinaFoundation/mina-fungible-token/pull/85

26 4 Vulnerability Report

Developer Response A new startUnpaused flag passed to the deploy() function determines
whether or not the contract starts as paused. It defaults to false.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

4.1 Detailed Description of Issues

4.1.8 V-MIN-VUL-008: Missing event on state update

Warning ebbc0ss
Missing/Incorrect Events Fixed
mina-fungible-token/FungibleToken.ts
pause(), unpause()

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/70, https:
//github.com/MinaFoundation/mina- fungible-token/pull/88

Upon a state update, it is strongly recommended that developers emit an event to indicate that
a change was made. Doing so allows both external users and protocol administrators to
monitor the protocol for a variety of reasons, including for potentially suspicious activity. It is
therefore critical for significant changes to the protocol to be accompanied with events to enable
this monitoring. The pause() and unpause() functions, however, do not emit events.

Impact If pause() or unpause() is called, protocol users and monitors may want to investigate.
pause()-ing the protocol may indicate to users that their funds are at risk. Unexpected
pause()-ing or unpause ()-ing may indicate key compromise to admins.

Recommendation Add an event that indicates when paused has changed.

Updated Developer Response We have added functionality to emit events when the paused
flag changes. We also added a BalanceChangeEvent which is emitted on each balance-change
inside of approveBase().

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

27

https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/88
https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/88
https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/88

28

© 00 N O U B W N =

e el
W N R ©

4 Vulnerability Report

4.1.9 V-MIN-VUL-009: transfer() overwrites balanceChange

Warning 1588c05
Transaction Ordering Open
src/lib/mina/token/token-contract.ts
transfer(

N/A

The TokenContract.transfer() function produces two account updates: one for the sender of
the funds and one for the receiver.

Rather than creating the AccountUpdates from scratch, it can accept a from and to AccountUpdate.
In this case, it overwrites the balanceChange field to the amount being transferred.

async transfer(
from: PublicKey | AccountUpdate,
to: PublicKey | AccountUpdate,
amount: UInt64 | number | bigint

) {
// [VERIDISE] ... elided
from.balanceChange = Int64.from(amount).neg();
to.balanceChange = Int64.from(amount);
let forest = toForest([from, to]);
await this.approveBase(forest);

}

Snippet 4.10: Snippet from transfer()

However, from and to may have non-zero balanceChanges when passed to transfer(). Setting
balanceChange overrides whatever the previous value was.

Impact If users pass an AccountUpdate with an existing balance change to this function
generated by another application, they may experience difficult-to-debug prover errors due to
the mutation.

Recommendation Use AccountUpdate.balance.addInPlace() and
AccountUpdate.balance.subInPlace() instead of overwriting balances. Note that, if from and to
have existing balances, this will require they are negatives of each other.

Developer Response The developers have been notified of the issue but have yet to respond
with acknowledgement or fixes.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

4.1 Detailed Description of Issues

4.1.10 V-MIN-VUL-010: Unused and duplicate program constructs

Info 1588ee5, ebbc088
Maintainability Partially Fixed
See issue description

See issue description

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/84, https:
//9ithub.com/MinaFoundation/mina- fungible- token/pull/91

Description The following program constructs are unused or have repeated functionality
which could be abstracted into a common function.

1. src/lib/mina/token/token-methods.ts:

a) tokenMethods(): mint(), burn(), and send() all recompute the derived token id
before calling getApprovedUpdate(). Consider computing the derived token ID
within the getApprovedUpdate() function. To avoid recomputing the derived token
ID in send(), the developers could have getApprovedUpdate() take the token ID as
an optional parameter, and return the computed value.

2. src/lib/mina/token/token-contract.ts:

a) TokenContract.approveAccountUpdate(): This function duplicates most of the body
of approveAccountUpdates().

3. oljs/src/lib/provable/merkle-list.ts:

a) from(), fromReverse(): Note that from(array) is simply
fromReverse([...array].reverse()), but both functions instead implement the
same logic.

b) MerkleListIterator, MerkleListIterator.Unsafe: Both objects implement
previous () and next () methods which share the majority of their logic.

4. mina-fungible-token/FungibleToken.ts:

a) checkPermissionEquals(): This function manually reimplements Provable.equal().

b) getCirculating(), updateCirculating(): These functions share a large amount of
functionality. While most of it is abstracted into computeCirculating(), they still
share non-trivial amounts of logic.

Impact These constructs may become out of sync with the rest of the project, leading to errors
if used in the future.

Developer Response The getCirculating() and updateCirculating() functions will be
removed in https://github.com/MinaFoundation/mina- fungible-token/issues/66.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

29

https://github.com/MinaFoundation/mina-fungible-token/pull/84, https://github.com/MinaFoundation/mina-fungible-token/pull/91
https://github.com/MinaFoundation/mina-fungible-token/pull/84, https://github.com/MinaFoundation/mina-fungible-token/pull/91
https://github.com/MinaFoundation/mina-fungible-token/pull/84, https://github.com/MinaFoundation/mina-fungible-token/pull/91
https://github.com/MinaFoundation/mina-fungible-token/issues/66

30 4 Vulnerability Report

Updated Developer Response
1. src/lib/mina/token/token-methods. ts:
a) We have decided not to take the recommendation.
2. src/lib/mina/token/token-contract.ts:
a) We have decided not to take the recommendation.
3. oljs/src/lib/provable/merkle-list.ts:

a) We have decided not to take the recommendation.
b) We have decided not to take the recommendation.

4. mina-fungible-token/FungibleToken.ts:

a) checkPermissionEquals() is removed and replaced with Provable.equal().
b) The updateCirculating and getCirculating methods have been removed.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

4.1 Detailed Description of Issues

4.1.11 V-MIN-VUL-011: Best practices and recommendations

Severity [IINQ 1588ee5, ebbc088

Maintainability Partially Fixed
File(s) See issue description
Location(s) See issue description

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/70, https:
//github.com/MinaFoundation/mina- fungible-token/pull/92

Description In the following locations, the auditors identified opportunities to improve code
quality and increase adherence to TypeScript best practices:

1. oljs/src/lib/provable/merkle-list.ts:

a) MerkleList.forEach(): Consider putting the isDummy argument first in the callback.
In TypeScript, (element: T) => void will type-check as an instance
of (element: T, isDummy: Bool, i: number) => void, but this almost certainly
signals an error by the user.

b) MerkleList.popIf(): this.data is supposed to restore the state from before pop() if
the condition evaluates to false. However, if the list was empty, and the condition
was false, then the data beforehand was []. Restoring the state should keep it as [1,
rather than changing it
to [{previousHash: emptyHash, element: provable.empty()}]. Luckily, this new list
is functionally the same for the purposes of a MerkleList. Nonetheless, restoring the
original data may prevent prover errors in the future.

C) MerkleListIterator.previous(): An inline comment mentions that
"it returns a dummy element if we’re at the start of the array". Note thata
MerkleListIterator has two array-like structures:

» The underlying JavaScript array, which is in the reverse order of the list.
» The list, represented by the sequence of hashes.

We recommend clarifying in this comment that previous() returns a dummy
element if at the start of the list, which corresponds to the end of the array.

d) MerkleList.next(): Unlike MerkleList.previous(), MerkleList.next() does not
prove membership in the list. Instead, it only computes the "next hash" if this
element were appended to the current hash.

This adds a very important caller requirement: users must remember to assert the iterator is
at the end of the list! Otherwise, the circuit will be under-constrained.

We recommend adding documentation to next () warning of this fact, and moving it into
the Unsafe module. If a "safe" implementation is required, we recommend requiring users
to provide a function implementing their desired invocation of next (), which can be
executed within a context that is guaranteed to call assertAtEnd().

2. mina-fungible-token/FungibleToken.ts:

a) FungibleToken.events.SetAdmin: A raw PublicKey is used as the event type for
setting an admin. This follows a different pattern than the other events, which each

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

31

https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/92
https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/92
https://github.com/MinaFoundation/mina-fungible-token/pull/70, https://github.com/MinaFoundation/mina-fungible-token/pull/92

32 4 Vulnerability Report

define a custom event type. Further, if the admin event is changed in the future, this
will make future changes more invasive.

b) FungibleToken.adminContract: Either suffixing the name of a constructor function
with "Constructor” or using a capital first letter makes its intended usage more clear.

c) FungibleToken.deploy(): Note that the initial deployment is signature-authorized,
not proof-authorized. Consequently, none of the type invariants may be trusted in
the initial deployment. As such, admin may be an invalid PublicKey (aka is0dd may
be non-boolean), and decimals may be larger than a UInt8. Luckily, whenever the
states are used, they are witnessed (either explicitly or inside of state.get()), which
adds constraints for the type-invariants. It still may aid users and app developers to
document that the deployed token contract may have invalid decimals to ensure no
off-chain code makes assumptions about the decimal-value based on the
verification-key alone.

d) FungibleToken.approveBase(): Consider documenting that forests are limited in size
by MAX_ACCOUNT_UPDATES defined in token-contracts. ts.

e) General Documentation: Consider noting the following facts for developers:

» Mint, Burn, and Transfer events may be triggered with amounts equal to o.
Off-chain listeners should be sure to take this into account. For example,
maintaining a list of depositors into by tracking Mint events requires filtering to
non-zero amounts.

Impact These minor errors may lead to future developer confusion.

Developer Response
1. oljs/src/lib/provable/merkle-list.ts:

a) We have decided not to take this recommendation.
b) We have decided not to take this recommendation.
¢) We have decided not to take this recommendation.
d) We have decided not to take this recommendation.

2. mina-fungible-token/FungibleToken.ts:

a) An admin event type now wraps the PublicKey.

b) The name of the field is now AdminContract.

¢) decimals and admin are now set in the @initialize() method.
d) We added documentation to approveBase().

e) We have decided not to take this recommendation.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

4.1 Detailed Description of Issues

4.1.12 V-MIN-VUL-012: Use of deprecated oljs functions

Severity @i 1588ee5, ebbc088
83418 Maintainability Fixed
File(s) mina-fungible-token/FungibleToken.ts,
oljs/src/lib/mina/token/token-contract.ts
Location(s) calculateCirculating(), transfer()

Confirmed Fix At https://github.com/MinaFoundation/mina- fungible-token/
pull/91, https://github.com/o0l-1labs/0ljs/pull/1776/files

1. mina-fungible-token/FungibleToken.ts:

a) calculateCirculating() uses the isPositive() function to assert that the new
computed total supply is non-negative. However, isPositive() has been deprecated
in favor of isPositiveVv2(), which does not suffer from multiple O-representations.

2. o0ljs/src/lib/mina/token/token-contract.ts:

a) TokenContract.transfer() uses the Int64.neg() function, which is deprecated in
favor of negVv2().

Impact Deprecated functions may not be supported in future versions of oljs, requiring
re-definition of the standard token implementation.

Recommendation Change the implementations to use non-deprecated functionality.

Developer Response
1. mina-fungible-token/FungibleToken.ts
a) calculateCirculating() has been removed.
2. oljs/src/lib/mina/token/token-contract.ts:

a) The new version of neg() is now used (negv2()), which will be replaced in the V2
version of oljs.

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

33

https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/o1-labs/o1js/pull/1776/files
https://github.com/MinaFoundation/mina-fungible-token/pull/91, https://github.com/o1-labs/o1js/pull/1776/files

34 4 Vulnerability Report

4.1.13 V-MIN-VUL-013: Comments on token design

Severity i) ebbc088
g3 Ll Usability Issue Fixed
File(s) mina-fungible-token/FungibleToken.ts
Location(s) FungibleToken
Confirmed Fix At https:
//github.com/MinaFoundation/mina- fungible- token/pull/98/

This issue describes some limitations of the design point chosen for the fungible token standard.

1. Custom transfer logic is not supported, since no calls are made to the admin contract.
Thus, token implementations will struggle to implement the following features:

a) Fee on transfer. For examples, see here.
b) Token blacklists or whitelists. For examples, see here.
c) Circuit-breaking or transfer amount limits. For examples, see here.

2. Custom burn logic is not supported.
Many applications may wish to maintain some invariant related to the total supply. For
instance, a wMina token contract’s admin would have a mechanism to lock or release Mina
in return for minting or burning wMina. This would currently be implemented by the
wMina admin contract having a method which calls burn on behalf of the user. However,
this would only maintain the invariant wiina supply >= locked Mina, rather than strict
equality.
This type of invariant is generally of interest to any token representing a share of some
wrapped assets.

3. Custom balanceOf logic is not supported:

a) Rebasable (like stEth) tokens may be difficult to implement. For more examples, see
here.

Impact Certain token applications may be limited, or lead to more complicated user imple-
mentations.

Recommendation Consider enabling additional admin hooks. To allow most tokens to operate
without as many hooks, a flag could be added which turns on or off individual admin hooks.

If constraint or usability limitations prevent this, consider documenting some of the limitations
clearly in the standard. Providing example workarounds for some of the above applications
may also help developers avoid creating their own overly-complicated solutions.

Developer Response We added additional documentation.

© 2024 Veridise Inc. Veridise Audit Report: Mina Fungible Token Standard

https://github.com/MinaFoundation/mina-fungible-token/pull/98/
https://github.com/MinaFoundation/mina-fungible-token/pull/98/
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#fee-on-transfer
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#tokens-with-blocklists
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#revert-on-large-approvals--transfers
https://github.com/lidofinance/lido-dao/blob/5fcedc6e9a9f3ec154e69cff47c2b9e25503a78a/contracts/0.4.24/StETH.sol#L166-L168
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#balance-modifications-outside-of-transfers-rebasingairdrops

¥ Glossary

ERC 20 The famous Ethereum fungible token standard. See https://eips.ethereum.org/
EIPS/eip-20 to learn more. 1

Ethereum One of the world’s largest blockchains, known especially for its novel adoption
of Turing-complete smart contracts to support decentralized applications. See https:
//en.wikipedia.org/wiki/Ethereum to learn more. 1

Merkle List Similar to a Merkle Tree, a Merkle List is a cryptogrpahic commitment to a set of
values. However, openings can only occur at the end of the list, rather than at any index.
See https://en.wikipedia.org/wiki/Hash_1list to learn more. 1, 3,7

Merkle Tree A cryptographic commitment to a list of values which can be opened at individual
entries in the list. See https://en.wikipedia.org/wiki/Merkle_tree to learn more. 3,
35

Mina Mina Protocol is a succinct 22KB blockchain utilizing zero-knowledge proofs. See
https://minaprotocol.com for more details. 1, 35

oljs A zero-knowledge TypeScript library which allows users to write zero-knowledge circuits
without writing constraints themselves. It is also used to write zkApps for the Mina
blockchain. For more information, see https://docs.minaprotocol.com/zkapps/oljs.
1,2,7

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure. 1,7, 35

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more. 1, 35

ZK Circuit zero-knowledge circuit. 1

zkApp A smart contract written for the Mina blockchain. See https://docs.minaprotocol.
com/zkapps/zkapp-development - frameworks for more. 35

Veridise Audit Report: Mina Fungible Token Standard © 2024 Veridise Inc.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://en.wikipedia.org/wiki/Ethereum
https://en.wikipedia.org/wiki/Ethereum
https://en.wikipedia.org/wiki/Hash_list
https://en.wikipedia.org/wiki/Merkle_tree
https://minaprotocol.com
https://docs.minaprotocol.com/zkapps/o1js
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://docs.minaprotocol.com/zkapps/zkapp-development-frameworks
https://docs.minaprotocol.com/zkapps/zkapp-development-frameworks

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-MIN-VUL-001: More than 500 pending mint/burns leads to DoS
	V-MIN-VUL-002: Tokens may be flash-minted without changing circulating
	V-MIN-VUL-003: Lazy sum accumulation can enable overflow DoS
	V-MIN-VUL-004: Centralization Risk
	V-MIN-VUL-005: ForestIterator checks for exact match in MayUseToken
	V-MIN-VUL-006: access permissions allows token deployer to mint tokens
	V-MIN-VUL-007: Tokens default to unpaused
	V-MIN-VUL-008: Missing event on state update
	V-MIN-VUL-009: transfer() overwrites balanceChange
	V-MIN-VUL-010: Unused and duplicate program constructs
	V-MIN-VUL-011: Best practices and recommendations
	V-MIN-VUL-012: Use of deprecated o1js functions
	V-MIN-VUL-013: Comments on token design
	Glossary

